A Stellar Perspective on the Magnetic Future of the Sun

Travis Metcalfe (SSI)
Rotation and activity decay together

Skumanich (1972)
Revised evolution beyond middle age

Evidence of unexpected behavior:
1. Rotation vs. Age
2. Rotation vs. T_{eff} (proxy for Mass)
3. Activity level vs. Rotation
4. Cycle period vs. Rotation
1. Old stars rotate faster than expected
1. Old stars rotate faster than expected
1. Old stars rotate faster than expected

van Saders et al. (2016, Nature)
2. Slow rotators absent or undetected

McQuillan et al. (2014); van Saders et al. (2018)
2. Slow rotators absent or undetected

McQuillan et al. (2014); van Saders et al. (2018)
2. Slow rotators absent or undetected

McQuillan et al. (2014); van Saders et al. (2018)
3. Chromospheric activity plunges

Metcalfe, Egeland & van Saders (2016)
3. Chromospheric activity plunges

Metcalfe, Egeland & van Saders (2016)
3. Chromospheric activity plunges

Metcalfe, Egeland & van Saders (2016)
4. Activity cycles get longer, disappear

Böhm-Vitense (2007); Metcalfe & van Saders (2017)
4. Activity cycles get longer, disappear

Böhm-Vitense (2007); Metcalfe & van Saders (2017)
Spindown mostly from largest scales

Reville et al. (2015); see also Garraffo et al. (2015)
α-effect weakens at low field strength

Brandenburg, Mathur & Metcalfe (2017)
Ω-effect less efficient as rotation slows

Petit et al. (2008)
Dynamo eventually shuts down

Kitchatinov & Nepomnyashchikh (2017)
Future observational tests

• Constraints on solar angular momentum loss from *in situ* data and magnetic field geometry
• Measurements of stellar differential rotation below a critical activity level (log R'\(\text{h}k < -5\))
• Zeeman Doppler Imaging observations of stars to determine large-scale magnetic field topology
• Asteroseismology with the TESS mission to determine precise masses and ages for Mount Wilson stars with known activity cycles
• Ground-based chromospheric activity monitoring for Kepler targets spanning the transition