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White Dwarfs (WDs) are ideal chronometers as they demonstrate a simple
relation between age and effective temperature. A calibration of their cooling curve
is essential to reduce one of the theoretical uncertainties in WD cosmochronology.
Such a calibration requires actual measurements of the rate of cooling for a few WDs
at different temperatures. We expect pulsating WDs, which are otherwise normal
WDs, to demonstrate a change in stable periods with time (P) due to cooling. By
measuring such a secular change of their periods, we will effectively be measuring
their rate of cooling. DAs constitute about 80% of the WD population and are
observed to pulsate in a temperature strip 11000 - 12000 K. We analyzed data
on the DAV ZZ Ceti, also called R548, spanning 30 years and we conclude that
the rate of period change with time for two of its pulsation periods is less than
(4.6 + 2.1) x 10715 s/s. This implies a cooling time-scale greater than or equal to
about 1.5 billion years, thus constraining the theoretical evolutionary models. This
measurement is consistent with the 215.2s pulsation in G117-B15A, which shows a

P of (2.3 4+1.4) x 10715 s/s.
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Chapter 1

Introduction

1.1 White Dwarfs as Chronometers

Of all the stars that ever burn hydrogen (to exclude brown dwarfs), 98-99% will
eventually become white dwarfs (Wiedemann 1990, Kepler & Bradley 1995). White
Dwarf stars (WDs) are high-gravity objects with log g =~ 8 (in C.G.S. units), an
average mass of 0.6 Mg and a size close to that of planet Earth. They represent
a relatively simple stellar state with no central nuclear fusion, though shell burn-
ing may be present. Electron pressure provides the main support against gravity.
These electrons also make the core isothermal due to their high conductivity. The
outer layers, composed of lighter elements because of gravitational settling, are non-
degenerate. They control the rate at which the residual thermal energy of the ions
in the electron degenerate isothermal core is radiated into space. WD evolution is
dominated by cooling, leading to a simple relation between effective temperature
and age of the WD, as given by Mestel theory (Mestel 1952, van Horn 1971). These
properties combine to make WDs very reliable chronometers.

WDs are very hot initially, just after the ejection and expansion of the plan-

etary nebulae, and expected to cool rapidly. The cooling rate decreases as their



temperature drops, allowing even the oldest WDs to remain visible. Detecting WDs
with faint absolute luminosities and average masses, is then synonymous with de-
tecting the oldest WDs. Also, the exponential decrease in the cooling rate causes a
pile up of WDs at lower temperatures. The volume density of WDs per unit absolute
bolometric magnitude plotted as a function of their luminosity, i.e. the luminosity
function (LF), is expected to show more and more WDs in lower temperature bins.
However, the best current observational determinations of the WD LF for the disk
indicate a turn-down in the space density of low luminosity stars (Liebert, Dahn
& Monet 1988; Leggett, Ruiz & Bergeron 1998; Oswalt, Smith, Wood & Hintzen
1996), presumed to be a signature of the finite age of the disk. The luminosity where
this turn-down occurs, in conjunction with theoretical cooling calculations, allowed
Winget et al. (1987) to estimate the age of the galactic disk. The determination of
the halo luminosity function would enable us to make the same sort of estimate for
the halo. This process is referred to as WD cosmochronology.

WD cosmochronology involves observational and theoretical uncertainties:
the observational uncertainties come from an inability to locate the turn-down in
the luminosity function accurately, because these cool WDs are faint and conse-
quently hard to detect. Note the location of the turn-down is not determined solely
by the few WDs detected at low temperatures, but because none are detected at
temperatures lower than that. Most of the theoretical uncertainty in the age estima-
tion comes from uncertainties in the constitutive physics and the basic parameters
that are used in the estimation of the cooling rates. These include calibration of
the cooling curve, core composition, crystallization and phase separation. We can
calibrate the cooling curve by measuring the cooling rate of WDs at different tem-
peratures. Nature has provided us with a way to measure the cooling rate of a WD

by giving us pulsating WDs.



1.2 An Introduction to Asteroseismology with Pulsat-

ing White Dwarfs

Pulsations in stars can be used to probe their interiors, just like earthquakes are used
to deduce the Earth’s interior. This is one of the few existing techniques to peek
inside stars and is called asteroseismology. We can use the asteroseismological tech-
nique of identifying the normal modes of pulsation to infer the stellar mass, effective
temperature, luminosity and consequently the star’s distance from the Sun, masses
of the surface layers, rotation rate, magnetic field strength, fractional crystallization
and neutrino luminosity (especially in pre-white dwarfs).

The observed properties of the currently known classes of pulsating WDs
place them in three different temperature ranges: the high temperature instability
strip consists of the PNNV and the DOV stars at an effective temperature of 140000
to 70000 K, logg = 6. The DBV instability strip occurs around 25000 K, while the
DAV instability strip is found between 11000 K to 12000 K (Winget 1998). The
periods are typically 100 s to 1000 s, consistent with nonradial g-mode pulsations.
WDs have high gravity (log g ~ 8), so nonradial g-mode pulsations are energetically
favored as they are dominated by motion along equi-potential surfaces, rather than
radial or nonradial p-mode pulsations, which are dominated by motion along the
radial direction. At the blue edge of the instability strip, we observe the pulsation
periods to be stable. This confirms our theoretical expectation that WD evolution

is simple cooling at almost a constant radius.

1.3 Changes in Pulsation Periods due to Cooling

Pulsating WDs are not defective or special in any way. It has been shown that
all known DAs pulsate in the ZZ Ceti instability strip (McGraw & Robinson 1976;

Lacombe & Fontaine 1980; Giovannini et al. 1998), i.e., it is an evolutionary effect.



So, when we measure the cooling rate for a pulsating WD, it applies to all WDs at
that temperature and mass. As cooling of the WD changes the pulsation period by
a very small amount, measuring the change in pulsation period with time, i.e., P,
actually constrains the rate of cooling.

There are two competing processes that govern P in the theoretical models
of the ZZ Ceti stars: cooling of the star that increases the periods as a result of the
increasing degeneracy (Winget, Hansen & van Horn 1983) and residual gravitational
contraction that decreases the periods. This can be expressed as follows (Kepler et

al. 2000):

dln P dinT. dInR
=—a +b

dt dt dt (1.1)

where a and b are constants associated with the rate of cooling and con-
traction respectively, and are of order unity. Following Kawaler, Winget & Hansen

(1985) and Kepler et al. (2000), we can write

dln P dInT,
= (— 1.2
a - ety (1.2)
where s is the ratio of the contraction to the cooling rate.
dlnR
= 1.
s dInT, (1.3)

Spectroscopic log g values suggest that R548 has a mass of 0.52 Mg, (Bergeron
et al. 1995). Bradley (1998) obtain a preferred seismological mass range of 0.54 -
0.56 M. For a DA WD near 12000 K, models predict a radius around 9.6 x 108
cm and a contraction rate of about 0.1 cm/yr (Bradley; private communication).
(Note that the contraction rate quoted by Kepler et al. (2000) has been mistyped
and reads as 1 cm/yr). Models also give a core temperature of 1.2 x 10” K and a

cooling rate of 0.05 K/yr (Kepler et al. 2000). These numbers imply that s is 0.025



and hence we conclude that P is dictated by the rate of cooling of the pulsating
star.

The rate of cooling decreases as the temperature drops and the cooling curve
is theoretically expected to be exponential. As we are using pulsating WDs to
measure the rate of cooling, we can only measure the cooling rate for the hot DOV
and PNNYV stars at effective temperatures between 140000 to 70000 K, for the DBVs
around 25000 K and for the DAVs between 11000 K to 12000 K. Thus, estimating
a P for hot pre-white dwarfs forms one end-point of the calibration curve, while
the cool DAV pulsators form the other end-point. Interpolation between these two
end-points would result in a nicely calibrated cooling curve. We could then measure
the P for the DBVs and see if it is consistent with the cooling curve.

The DOV star PG-1159-035 revealed a rate of period change for the 516 s
mode (Costa, Kepler, & Winget 1999) of (13.0 £ 2.6) x 107! s/s. This value of P
agrees in sign with the theoretical models, but is an order of magnitude larger. At
the cool end, G117-B15A has a measured P = (2.3 + 1.4) x 1075 s/s (Kepler et al.
2000). None of the DBVs have a measured P yet. But a decade of data now exists
on GD358 and it should be possible to measure P.

1.4 Motivation for choosing a DAV
There are three good reasons to choose a DAV and they are outlined below.

1. Results to be applied to an Ensemble : By measuring the cooling rate
of another DAV, which has a different stellar mass, we are providing a second
independent measurement of the cooling rate of a low temperature WD. A
second measurement gains importance as we will be applying the results to

DA WDs as a class and they constitute 80% of the WD population.



Core Composition : The rate of cooling of a WD depends on core com-
position and stellar mass. For different core compositions there are families of
cooling curves. The heavier the core, the faster the star cools. Comparing the
measured P with theoretical evolutionary models would give us an idea of the
mean core composition. Using a Mestel-like cooling law, Kepler et al. (1991)
wrote a relation between the rate of period change and the core mean atomic

weight A as:
A
15

P(A) = 4.3 x10™ T

(1.4)

This will also prove to be a testing ground for models with substantially heavier

cores, as they would produce a faster rate of period change. P measurements

for G117-B15A indicate a C/O core.

Motivation for choosing R548 (ZZ Ceti) : Now that we have estab-
lished our motivation for choosing a DAV, we have 29 choices. Using standard
evolutionary theory, Bradley, Winget & Wood (1992) estimated the cooling
time-scale, i.e., %, for a DA at about 12000 K to be a few billion years. We
thus expect the P to be positive and of the order of 10~1° s/s for a DAV.
This is consistent with the measurements for G117-B15A. If the size of the P
that we have set out to measure is 1071 s/s, it would take us a few decades
of data to measure a detectable change in the period. With that criterion in
mind, and noting that only stars in the blue edge have really linear stable
pulsations, our choice of a suitable candidate amongst all the pulsating DAV,
is limited to exactly three. These are G117-B15A, R548 (ZZ Ceti) and L19-2,
the only ones to have archival data spanning a few decades. Kepler is working
on G117-B15A and L19-2 is not observable from McDonald Observatory, TX.
We therefore chose to work on R548 and acquired an opportunity to extend
the time-base by seven years. We observed R548 extensively in 1999 and 2000.

Along with the previous data, we now have a time-base of 30 years, from 1970



to 2000.

We have established our motivation for attempting to measure the P for the
known pulsations in R548. In the subsequent chapters, we will see how the proposed

work was carried out and examine its implications.



Chapter 2

Observations and Data

Reduction

Our main goal is to measure the P for the four known pulsations in R548. With
that in mind, we obtained archival data on R548 (1970 - 1993) from S. O. Kepler,
for which we are very grateful to him. By observing the star in 1999 and 2000,
we extended the time-base by seven years. We did high speed time series aperture
photometry on R548 in September and October 1999 as well as in August, Septem-
ber and October 2000 at McDonald Observatory. We were also fortunate enough to
have R548 included as a secondary target star in the Whole Earth Telescope (WET)
campaign XCov 18 in November 1999 and in XCov 20 in November 2000. We pro-
fusely thank all the WET community for these data sets. A journal of observations
is given in table 2.1 for all the data acquired in 1999 and 2000. Of these, the Wise

Observatory CCD data could not be used due to severe extinction problems.



Observing Run Date Time Duration Telescope Observatory
(TCB) (hours) ‘

asm-0003 September 5, 99 3.7 0.9m McDonald Observatory
asm-0004 September 6, 99 2.1 0.9m McDonald Observatory
asm-0005 September 7, 99 2.5 0.9m McDonald Observatory
asm-0007 September 8, 99 1.5 0.9m McDonald Observatory
asm-0010 September 10, 99 2.5 2.1m McDonald Observatory
asm-0013 September 15, 99 5.2 0.9m McDonald Observatory
asm-0016 September 17, 99 2.1 0.9m McDonald Observatory
asm-0017 September 18, 99 3.1 0.9m McDonald Observatory
asm-0019 September 19, 99 4.5 0.9m McDonald Observatory
asm-0021 September 20, 99 6.4 0.9m McDonald Observatory
asm-0031 October 15, 99 2.8 0.9m McDonald Observatory
asm-0032 October 15, 99 6.0 0.9m McDonald Observatory
asm-0039 October 16, 99 8.0 0.9m McDonald Observatory
asm-0040 October 19, 99 7.7 0.9m McDonald Observatory
asm-0041 October 20, 99 8.0 0.9m McDonald Observatory
asm-0042 October 21, 99 8.2 0.9m McDonald Observatory
mdr066 November 6, 99 1.4 1.5m CTIO
n49-0425 November 8, 99 18:37:50 3.2 Im UPSO
n49-0426 November 9, 99 16:51:00 4.5 1m UPSO

dmk124 November 9, 99 18:36:01 2.1 1m SAAO
wced-004 November 9, 99 17:25:08 0.8 1m(CCD) Wise Observatory
wced-007 November 10, 99 16:56:20 1.4 1m(CCD) Wise Observatory
n49-0427 November 10, 99 14:03:10 2.5 1m UPSO

dmk126 November 10, 99 18:32:00 2.0 1m SAAO
no1199q1 November 11, 99 0.9 0.6m Mauna Kea Observatory
n0l1199q2 November 11, 99 4.1 0.6m Mauna Kea Observatory
weced-012 November 11, 99 1.8 1m(CCD) Wise Observatory
tsm-0065 November 12, 99 1.0 2.1m McDonald Observatory
mdr083 November 13, 99 1.6 1.5m CTIO

mdr086 November 14, 99 1.4 1.5m CTIO
tsm-0068 November 14, 99 1.4 2.1m McDonald Observatory
nol499ql November 14, 99 3.5 0.6m Mauna Kea Observatory
mdr088 November 15, 99 1.9 1.5m CTIO
nol599q2 November 15, 99 1.8 0.6m Mauna Kea Observatory
nol699ql November 16, 99 4.4 0.6m Mauna Kea Observatory
asm-0057 August 24, 00 4.0 2.1m McDonald Observatory
asm-0058 August 25, 00 4.0 2.1m McDonald Observatory
asm-0059 August 28, 00 3.4 2.1m McDonald Observatory
asm-0060 September 24, 00 3.2 2.1m McDonald Observatory
asm-0063 September 26, 00 6.7 2.1m McDonald Observatory
asm-0065 September 27, 00 3.5 2.1m McDonald Observatory
asm-0070 September 29, 00 3.0 2.1m McDonald Observatory
asm-0072 September 30, 00 5.7 2.1m McDonald Observatory
asm-0075 October 1, 00 3.3 2.1m McDonald Observatory
asm-0077 October 2, 00 4.4 2.1m McDonald Observatory
gh-0500 October 7, 00 0.9 2.1m McDonald Observatory
gh-0501 October 7, 00 0.9 2.1m McDonald Observatory
gh-0502 October 10, 00 1.0 2.1m McDonald Observatory

Table 2.1: Journal of Observations for the 1999 and 2000 data on R548



2.1 Observations

R548 is a 14th magnitude WD and we observed it with the 36” and 82” telescopes at
McDonald Observatory. The data were acquired using a 3-star photometer (Klein-
man, Nather & Phillips 96) and a software program called “QUILT 9.14”, written
by Ed Nather. R548 has two main doublets, the details of which have been given in

table 2.2 (Tomaney 1987; private communication).

Period Amplitude | Frequency
5 (mma) | (uH2)
213.132603 6.7 4691.9
212.768428 4.1 4699.9
274.250835 4.1 3646.3
274.774510 2.9 3639.3

Table 2.2: Previous data on the R548 pulsational doublets

Note that an amplitude of 1 mma (milli modulation amplitude) implies an
amplitude of one part in a thousand. In order to resolve the two closely spaced
frequencies in each of the doublets, a time-base of 35 to 40 hours is required. This
necessitates observing R548 for a few days. An integration time of 5 to 10 s pro-
vides a suitable time resolution to observe the pulsation periods. This also sets
the Nyquist frequency, the largest observable frequency, at 0.05 Hz. Rb548 shows
nonradial g-mode pulsations, which have periods in the range of a 100 s to a 1000 s,
i.e., frequencies lower than 0.01 Hz only. We do not use a filter during observation
to maximize the signal to noise ratio. This does not constitute a problem as the
nonradial g-mode pulsations have the same phase in all colors (Robinson, Kepler
& Nather 1982; Nitta et al. 1999). However, if the phototube is red-sensitive or
a CCD is being used to acquire the data, then we will get correct phases, but the
amplitudes can be under-estimated by as much as 20% for a DAV (Kanaan et al.
2000; in press). In order to get the correct amplitudes, we do have to use a filter to

cut the red part of the spectrum. This reduces the signal to noise ratio, but yields
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correct amplitudes. We need a good signal to noise ratio and a long time-base for
accurate measurement of period and phase for each of the pulsations. Hence we

observe the target as long as possible each night.

2.2 Observing with the 3-channel photometer

The photometer, we used on most observations, has 3 channels, allowing us to
observe 3 different patches of sky at the same time. Typically, we choose the target
star to be in channel 1, as this channel is aligned with the center of the field and light
loss due to reflections is minimized. A comparison or guide star becomes the subject
of channel 2, while channel 3 is generally used to observe sky. Brightness variations
in the sky can be removed from channels 1 and 2 using data from channel 3. The
3 photo-tubes, belonging to the respective channels have different sensitivities. The
ratio of their sensitivities must be taken into account for sky subtraction, to be done
later, during data reduction. So, in order to determine this ratio, we observe sky at
the beginning and end of each observing run in all 3 channels.

We are doing aperture photometry, and ideally need the target star at the
center of the aperture throughout the observing run. However, since the telescope
does not track perfectly, we need to check whether the target star is centered at
least every few minutes and more frequently if necessary. This process of checking
would normally require light to the photo-tube to be cut-off and sent to the eye-piece
instead. This would prove to be a disastrous effect on the light curve of the target
star and the resultant data would be marginal. To avoid this, a second channel is
built into the instrument for a guide star. So, we choose a suitable guide star at
the beginning of the observing run and center both stars simultaneously in their
respective apertures. We can now guide throughout the run using the guide star.
The comparison or guide star has to be within a certain distance from the target

star, determined by the plate scale and the instrument design. It cannot be too
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close or too far away from the target star. We try to choose a non-variable guide
star. However, more than once in the history of the WET, a variable comparison
star has led to the discovery of a new pulsating star.

We choose an aperture size for channel 1 according to the seeing. A rough
rule of thumb is that the aperture size should be ten times the seeing disk. Aperture
size of channel 2 is chosen to be smaller than that for channel 1, or at maximum,
the same size as channel 1. This would facilitate an early warning of a guide error.
A careful observer would check every few hours if channel 1 is still centered. This is
to avoid having channel 2 centered and the target star at the edge of the aperture,
due to flexure or any motion of the XY stage that is used to find and center the
guide star. Also, atmospheric dispersion and differential extinction can cause the
same effect as the target star is probably more blue than the comparison star.

Manual guiding, as has been described above, can be very tedious and even if
the observer guides every 3-4 minutes, there can be substantial drifts and the stars
may not be centered during the time between guiding. This is specially true for
extreme positions of the telescope, when the tracking is unreliable or if the seeing
is bad or in case of wind bounce. To get better quality of data in these and other
conditions, we resorted to a remote guider, the SBig system. The light from the
guide star is split into two beams by a dichroic. Red light is sent to the red-sensitive
CCD of the SBig and blue light is sent to the blue-sensitive Photo Multiplier Tube
of channel 2. The SBig then provides a CCD image to an observer sitting in the
control room, who can now guide every 5-10 s, if necessary, and keep the guide star
well centered. As the telescope tracks through differing air-masses, the centers of
red and blue images may not coincide due to differential refraction. So, the observer
must simultaneously center both target and guide stars and the SBig CCD image

every 2-3 hours or so, depending on the change in air-mass.
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2.3 Data Reduction

Reducing data is an art with many steps being subjective to individual assessment.
It involves excluding from the data what is not due to the star, but due to Earth’s
atmosphere and the instrument.

We reduced and analyzed the data in the manner described by Nather et
al. (1990) and Kepler (1993) using the software called QED (Clemens 1993), also
written by Ed Nather. The preliminary step is to identify all the data points that
contain sky. At this stage, we edit out bad points as may have been caused by
guiding errors, dome errors, clouds, flashlight shining down the tube, lightning and
bugs crawling in the aperture among the few things that could go wrong, not even
beginning to mention the electronics or the RS-232 communication cables from
Cassegrain to control room.

The following steps are involved in data reduction using QED :

1. Dead-time Correction : The photo-tube has a finite response time, during
which it cannot distinguish between the time of arrival of two photons. This
non-zero response time is called dead-time. For the R647 Hamamatsu photo-
tubes used in the photometer, the dead time is 15 nanoseconds (Nather; private
communication). Note that the electronics for the photometer is so designed
that it does not care about the energy of the individual photons. Pulses
produced by each photon are tailored to be the same height. Hence, two
photons coming in within the dead time are not counted as a single photon
with twice the energy, but as a single photon. If the source is very bright, then
the fraction of photons lost due to dead-time can be large. R548 is a 14th
magnitude star and we got about 2000 counts per second after subtracting the
sky counts on the 36” telescope at McDonald Observatory in bright time and
using an aperture of 2 mm. This implies a counting rate loss of 0.003% due

to dead-time, which is pretty small. On the 82" telescope, we got 3000 cps
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in dark time and therefore a loss of 0.0045%. We got about 13000 cps on the
82” telescope in bright time and an implied loss of 0.02%. Note that all these
count rates have been quoted for an aperture size of 2 mm after subtracting
the sky counts. If you compare the count rates from bright time on the 36”
telescope ws. bright time on the 82” telescope, they do show a ratio similar to
a simple scaling of the areas of the primary mirrors. However, if you compare
the count rates from bright time on the 36” telescope to the dark time on
the 82” telescope, they do not scale as the ratio of the areas of the primary

mirrors.

Sky Subtraction : Variations in the seeing, transparency of the sky, etc.
during the course of the night increase the amount of noise in the data, es-
pecially at low frequencies. Assuming the sky fluctuations in channel 3 are
correlated to the sky fluctuations in channels 1 and 2, we can eliminate such
variations by subtracting the sky in channel 3 from channel 1 and 2 light
curves, after the sky has been smoothed. This averaging process is done to
reduce the amount of noise added to the 2 light curves, as the atmospheric
cells responsible for the scintillation are smaller than the distance between the

apertures.

As mentioned earlier, the sensitivities of the tubes are different. Simultaneous
observations of the sky in all 3 channels at the beginning and end of the run are

used to obtain the sensitivity ratios, which we can then use in sky subtraction.

Extinction Correction : As we track the target with the telescope, we are
observing it through a varying air-mass. The program corrects the light curves
of the target and comparison star for extinction, a wavelength dependent ef-
fect, using a given extinction co-efficient. The parameters for this exponential
correction are determined by the stellar co-ordinates, location of the observa-

tory and time of observation.
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Division by Channel 2 : This is an optional step and is used to eliminate
slow variations affecting both channels in the same way, only if the other steps
have been unsuccessful in doing so. This step is particularly advantageous
while recovering data from cirrus, or even a relatively mild error due to guiding
or dome obstruction. But this increases the amount of noise and hence one
must always smooth channel 2 before any such division. We also verified
whether such an operation affects the phase determination and we conclude
that it does not. Here extreme caution is necessary, and experience is the best

guide.

Polynomial Correction : It is not possible most of the times to completely
eliminate slow variations (slow compared to the pulsations), as we have not
really measured extinction variations throughout the night, These could be
remnants of incorrect sky subtraction or extinction correction. Such varia-
tions increase the noise at the low frequencies, when you take the Fourier
transform of the light curve. To reduce this, we subtract a polynomial of
specified order and remove these variations, at least to some extent. This step
gains importance in our work as we need very precise phase information. The
linear least square fits on the data do not account for such slow variations and
therefore the fit is affected by their presence. This too is an optional step and
we consider the length of the observing run before deciding on the order of
the polynomial to be subtracted. The higher the order of the polynomial, the
greater is the interference at the low frequency end of the pulsation spectrum.
Suppose the observing run is one hour long and we subtract a polynomial of
order 3, then we are interfering up to a frequency region of 278 yHz. The
main frequencies in R548 are at 4692 pyHz and 3646 pHz. We have never gone
beyond subtracting a polynomial of order 3 from the reduced data, which is

conservative enough.
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6. Bridging Gaps : Gaps maybe caused in the data due to clouds, guiding,
errors, etc. If the data is single-site, then there is a gap during day time. Such
gaps introduce aliases in the Fourier transform (Nather 1995). Since we are
looking at variable WDs, we bridge a gap only if it is less than quarter of
a pulsation cycle. We use our best judgement whether or not a bridge does
justice to the missing data in the gap. If we cannot bridge the data, we write

it as separate chunks or files.

After this preliminary reduction, we bring the data to the same fractional
amplitude scale. We convert the times of arrival of photons to a Barycentric Co-
ordinated Time TCB (Standish 1998). At this juncture, the light curves look as
shown in figures 2.1-2.5.

Next, we compute a Fourier Transform (FT) of all the data sets. Note that
if you take a F'T of a sinusoidal signal that is finite in length and has gaps, then you
would get a “window” pattern, as shown in the lower panel of figure 2.6.

The true frequencies have to be disentangled from the aliases, as seen in the
window. Once the genuine frequencies are identified, then we synthesize a light curve
with those frequencies and subtract it from the real data sets. This process is called
pre-whitening. Pre-whitening with the true frequency results in a disappearance of
most of the power in the FT, while pre-whitening with an alias results in a consid-
erable amount of remnant power. This serves as a confirmatory test that we have
correctly identified the pulsation frequencies. The FT thus gives us approximate
values for period, phase and amplitude for all the four pulsations. The uncertainty
in period being related to the peak width in the FT.

We improve our values for period, phase and amplitude for the four main
pulsations by taking each data set through the following two step procedure. The
approximate values for periods known from the F'T are fed into a linear least squares

program. Since we are dealing with two closely spaced doublets, we initially fit the
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Figure 2.1.—: Light Curve of the reduced data on R548 from September 5 - 10,
1999
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Figure 2.2.—: Light Curve of the reduced data on R548 from September 15 - 20,
1999
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Figure 2.3.—: Light Curve of the reduced data on R548 from October 15 - 21, 1999
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Figure 2.4.—: Light Curve of the reduced data on R548 from the WET run (Novem-
ber 6 - 11, 1999)
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Figure 2.5.—: Light Curve of the reduced data on R548 from the WET run (Novem-
ber 12 - 16, 1999)

21



o~
I
|

)
I
|

Amplitude (mma)
Il

0 0.002 0.004 0.006 0.008 0.01
Frequency (Hz)

1000

800

600

400

Amplitude

200

A

1 ‘ 1 1 ‘ 1 1 1 ‘ 1 1 ‘ 1 1
0.002 0.004 0.006 0.008 0.01
Frequency (Hz)

o

Figure 2.6.—: Fourier Transform of 1999 data on R548 with the Window Pattern

22



larger amplitude period in each doublet. The least squares program “LLSPHB”,
originally written by S. O. Kepler and modified by Scot Kleinman, gives phase and
amplitude information for the two periods. Note that this program fits one period
at a time. We use these values as input for a non-linear least squares program
“NLSQHB”, taken from Press et al, Section 14.4 and modified by Scot Kleinman.
This program optimizes the period, amplitude and phase to fit the data better.
Then we go back to LLSPHB and use these two better known values for the periods
along with approximately known values for the two remaining periods. So, we get
amplitude and phase information for all four periods, and feed it again to NLSQHB.
Finally we obtain period, amplitude and phase information after fitting all four

frequencies simultaneously for each data set.

2.4 Noise and Uncertainties

The uncertainties obtained from NLSQHB may be underestimated due to pattern
noise. When the program tries to fit one frequency, the other frequency in the closely
spaced doublet, represents a strong source of non-Gaussian noise. We call this pat-
tern noise. Another source of non-Gaussian noise is low frequency noise. Photons
arriving from Rb548 pass through the atmosphere and then the detection system.
Systematic effects like atmospheric extinction, variations in the night transparency,
cirrus, etc. introduce low frequency noise in the data. During data reduction, most
of this is eliminated. However, some remnant low frequency noise can still affect the
least squares fit. This indicates the importance of the polynomial correction. Due
to these sources of non-random noise (chiefly pattern noise), the calculated uncer-
tainties are under-estimated, since our calculation assumes a Gaussian distribution.

It is also interesting to see how pure noise affects the uncertainties in period,
phase and amplitude respectively. An FT of white noise will show peaks at all

frequencies. For the purposes of calculating some representative numbers, let us
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assume that the noise amplitude is about 1 part in a thousand, i.e., 1 mma. (This
is a reasonable assumption as the FT of the 1999 data sets in fig. 2.6 indicates
an average noise level of 0.5 mma). Such a FT would also show higher amplitudes
at lower frequencies from systematic effects introduced by the atmosphere and the
detection system. This also depends on the expertise of the person who reduces the
data.

Period determination is affected by the local noise band alone. The span of
this local band can be determined by looking at the extent of the window, about 200
pHz for our typical FTs. Phase is also affected in the same way as period. So, we
conclude that period and phase are affected by a very small portion (about 200 pHz)
of pure noise spectrum (0 - 10000 pHz). To give a more quantitative picture, we
quote (from non-linear least squares fits on the data sets) percentage uncertainties
in period to be typically 0.001 - 0.0001%. We find typical uncertainties in phase to
be 2-3 s for the 213 s doublet and 3-6 s for the 274 s doublet. The uncertainties in
phase seem to be inversely related to their amplitudes. The percentage uncertainties
for phase seem to be 1-2%.

To see how noise affects amplitude, we consider a light curve of the data. The
noise directly adds or subtracts from the counts, and we could say that the noise
amplitude is effectively adding and subtracting from the pulsation amplitude. This
would incorrectly imply that the error should be as large as £1 mma. But we must
remember that the fit is over the entire data set and this makes the measurement
more reliable, thus reducing the uncertainties. Typical percentage uncertainties in
amplitude seem to be about 3-5 %. Low amplitude pulsations of 2-3 mma result in
larger typical uncertainties like 7-10 %. So, the amplitude determination is more
strongly affected by noise than period or phase. Please bear in mind that all the
numbers quoted above assume that the data set is long enough to resolve the pul-

sation spectrum and keep the noise level down to 1 mma. Noise in the FT will have
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a higher amplitude for short data sets.
We have seen how to acquire and reduce the data. In the subsequent chapter,

we will analyze the data to extract a P measurement.
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Chapter 3

Data Analysis and a Summary

of the Results

There are certain necessary conditions that must be satisfied before a P measure-
ment can be meaningful. We assume that the 4 main pulsation frequencies are
resolved in the star and their amplitudes are stable. There is another critical as-
sumption that we make. In Ed Nather’s words, “We assume that the star does the
same thing when we are not looking as when we are looking.”

We now have various reduced data sets from 1970 to 2000. The first step
is to check whether all the four frequencies are resolved in these data sets. This is
important for R548, since it has two doublets with a spacing of about 0.5 s (or 7 and
8 pHz respectively, as is evident from table 2.2). If the doublets are not resolved,
then the phase information will be misleading. We pre-whiten the data with 213.132
s and 274.25 s and check if the phases for 213.768 s and 274.77 s remain the same
before and after pre-whitening. If they do, then those data sets can be used in the
determination of P since we will have meaningful phases. After we carried out this
step, data sets from the following years survived, 1970, 1975, 1980, 1986, 1991, 1993,

1999 and 2000. For each of these, we have a value of period, phase and amplitude
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for all the 4 pulsations. Now, we can consider using the O-C technique to improve

the period estimates and to find the value of P for all four pulsations.

3.0.1 O-C Technique

The O-C technique (e.g. Kepler et al. 1991) can be used to improve the period
estimate for any periodic phenomena. The O stands for observed value of the time
of maximum (or time of zero) that occurs in a data set. The C stands for its
calculated value. If O-C is not zero, then we need to improve our estimate of the
period or the period is not constant.

Consider a periodic phenomena with period P. The time of occurrence of

the maximum, is a function of the cycle count E.

tmaz = tmaz (E) (3.1)

Expanding in a Taylor series about E = Ey, we have

tmaz = tmaz|g, + %lEO(E — Ep) + %%%(E — Eo)*+--- (3.2)
This is a reasonable approach as this is normally a rapidly convergent series. For
a time-span of a few years, the second order term can be neglected for a DAV like
R548, as the cooling time-scale is a few billion years, assuming the pulsation is
dominated by the cooling time-scale and not by a local effect in the star. It gains
significance only in greater time-spans like a decade. Assuming the pulsation is

strictly periodic with period P, we can identify

dt
d’gm =P (3.3)
Ptyer dP
Ptomez  dt dP
dEZ dE di (3:5)
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dZtmacc
dE?

= PP (3.6)
Neglecting the higher order terms (implying that P is constant),
1 .
tmaz = tmaz |, + Plp,(E — Eo) + 5P|, P(E — Ey)? (3.7)

obs

Now, we define O as t2 .

and obtain its value by fitting the relevant number of

frequencies to a data set with our guess periods.
C= t'fr(zl(lzz = t%]amlEo + valEO (E - EO) (3'8)

where the superscript “bv” stands for the best value.

1 .
O—-C = AE;+APE + 5PPE2 (3.9)
where
AEy = tmuﬂC'EO - t%aw'EO (310)
AP = P|p — P"|p, (3.11)

AP is the correction in period. Using this basic theoretical recipe, we should be
able to determine a point on the O-C vs. E diagram corresponding to each data set.

We could then use a linear least squares fit and obtain the parameters AP and P.

3.0.2 Bootstrapping with the O-C technique

The above O-C technique assumes the knowledge of a period to such a high accuracy
that you are able to calculate the phase for the next data set with an error less than
10% of the pulsation cycle, i.e., a cycle count with certainty. Bootstrapping (Winget
et al. 1985) is the technique to achieve this amazing feat. Our data sets have an
average gap of 5-6 years. We use the period from one data set and calculate the
phase for the subsequent data set. We force the calculated and observed values of

phase to match by tweaking the period. So, we neglect the P term, since we are
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dealing with a time-span of a few years. We also bootstrap from the second data
set to the first one. An average of the two rectified periods is now our best value
and their difference divided by a factor of 2 is the error in that value. It is more
accurate and the error is comparable to a data set spanning the entire duration
right from the first season of observations to the second one, a time-span of 5-6
years. Ordinarily, one would bootstrap a night of observations to the next and
thus build up a complete data set for a season. Then continue the process as we
described above to bootstrap between data sets. However, the doublets in R548 are
closely spaced and it takes about 35 hours of data in principle to resolve them. In
practice,it takes almost a week of observations to resolve the doublets as the data
has gaps and noise. Therefore, we could only bootstrap from one season to another.
Using this new period, we can bootstrap to the next data set. In order to determine
phases for the next data set, we used a linear least squares fit on all four frequencies
simultaneously. This program, called “LLSP4S”, was originally written by S.O.
Kepler and modified by Scot Kleinman. Bootstrapping to the data sets further on,
gives you a refinement in the period estimates and reduces the uncertainties involved

with each consecutive data set.

3.0.3 Cycle Count Errors

Bootstrapping assumes that we know the period well enough to predict the phase
for the next data set without an ambiguity of a cycle count. This may not always be
the case. When faced with this difficulty, we compute corrections to period for cycle
count E as well as £ £ 1. Since we had reason to believe that the uncertainties in
phase quoted by the least squares program maybe underestimated, we checked for
cycle errors up to E £+ 2. Then, we plot an O-C diagram with each of these periods
and the one that yields the lowest phase dispersion is the most probable solution. An

equivalent mathematical statement would be to say that of these five possibilities,
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the one that yields the smallest correction in period is the most probable solution.
We checked all the possibilities using both these tests for each gap between the data
sets. They always indicated the same answer and were consistent with each other.
This is also the appropriate juncture to point out that we assume the lowest phase
dispersion or the smallest correction in period is the best solution because we already
have an idea in our minds of what the P should look like. (As mentioned earlier,
cooling of the DAV is one of the slowest changes). To do a more objective and
assumption-free search in a larger parameter space of P and P in order to verify the
uniqueness of this solution, is a computationally intensive task, and we hope to do
it eventually. All the bootstrapping values and the O-C diagrams for both periods
of the 213 s doublet have been shown in the Appendix.

Here, we present our results for the best Period and P values obtained for
the 213 s doublet in tables 3.1 - 3.2. We also indicate our final O-C values, which
have been plotted in figure 3.1. The zero Epoch corresponds to a reference Tzero
of 2446679.833986 TCB. We obtain P = (2.3 + 4.2) x 1075 s/s for the period
P = 213.13260565 + 5.3 x 107 s. We also found P = (—4.5 £ 7.9) x 105 s/s for
the period P = 212.76842930 + 1.0 x 10 % s.

O-C | Error in O-C | Epoch Season
(s) (s)

3.9 3.7 -2346428 1970
2.2 1.7 -1617531 1975
1.9 2.5 -862740 1980
0.0 2.8 0 1986
7.4 1.1 743874 1991
3.1 2.0 1049404 1993
6.4 1.5 1924342 | Sep-Oct 1999
3.7 1.7 1949381 Nov 1999
2.5 2.3 2067847 2000

Table 3.1: O-C table for Period 213.13260565 s and P = (2.3 +4.2) x 10 s/s

The uncertainties would be more reliable if there were a larger number of
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Figure 3.1.— The 1991 data set spans over 5 days, while the other data sets are a
month long on average. Hence, it is not alarming to see that the 1991 data point does
not lie on the best fit within errors. Also, note that the errors are under-estimated
as has clearly been demonstrated in the Monte-Carlo section.
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points on the O-C diagram. Let us compare the results that we have obtained with
previous values of P for the 4 pulsations. Tomaney (1987) published his best value,
which was P < 9.6 x 10715 s/s at the 68% confidence level. He concluded that
| P |< 300 x 10715 s/s for all the four modes at the 1o level. Kepler et al. (1995)
constrained it further and showed that | P |< 200 x 107'® s/s at the 1o level for
both the doublets. So, our results for the 213 s doublet are a further refinement due
to the larger time-base, and they are consistent with previous results.

The 274 s doublet seems to be changing on a time-scale, that is 100 times
faster than the 213 s doublet. Thus, the same gaps between data sets become too
large to nail down the cycle counts. Also, there maybe short-term variations of
the order of a few months to a few years, swamping out the parabolic effect of the
cooling. We find that the O-C diagrams for both modes in the 274 s doublet do not
fit a parabola and are not indicative of cooling. The O-C diagrams for the 274 s
doublet have not been plotted, but the appendix does give our best O-C tables C.1
and C.2 for both periods in the doublet. The tables may have cycle count errors.

3.1 Second Verification using a Non-Linear Least Squares
Fit

This technique consists of a non-linear least squares fit on all the data from 1970 to
2000 for a single period. We used the NLSPDOT program (Costa, Kepler & Winget
1999), written by S. O. Kepler. The inputs to the program are period, phase and
amplitude and a guess value for P. Of these, it optimizes only the period, phase and
P to minimize the residuals. The amplitude is fixed. This method differs from the
O-C technique in the following way. The O-C technique uses the entire data set to
get the best value for the first time of maximum. While, the non-linear least squares

technique utilizes all the data and therefore all the times of maxima, occurring in
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a data set. This increases the reliability of the P value. Another advantage is that
we can now include all the data, irrespective of whether the doublets are resolved
or not in individual sets.

Note that this technique also suffers from cycle count errors in gaps between
data sets, just like the O-C method. We input a guess value for P and by doing
that, we are effectively feeding in cycle counts for the various epochs. The same
bootstrapping process is implicitly applied here. So, the program will converge to
the closest peak, whether it is real or not. Again, to search more objectively in a
larger P, P grid would be computationally intensive.

The results for the O-C technique are consistent with the non-linear least
squares fit within the uncertainties and are presented in table 3.3. The uncertainties

quoted below may be underestimated due to pattern noise.

3.2 Other Techniques to determine P

Determining a number of the order of 10715 s/s from 3 decades of data, worrying
about timing errors in each of those data sets, always dealing with numbers that
possess 7 to 8 significant digits, etc. has certainly not been an easy task. If we can
measure this number in other ways, then that is an opportunity to be sought by
all means. Different techniques have different advantages and different sources of

uncertainties. So, we hereby discuss some other techniques to determine P.

1. Direct Method : Ideally, we should be able to estimate the periods from
each data set and plot Period vs. Time to find the slope P. This brute force
direct approach has a difficulty. Periods determined from individual data sets
have large uncertainties and this manifests itself as a large uncertainty in the
optimal best fit slope. However, we can still find the largest slope possible and

use it to constrain P. It turns out that this is a much weaker constraint than
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the O-C method. This is easy to understand since P enters as a second order
effect in the O-C diagram, while it is a first order term as far as the direct
method is concerned. Therefore it is possible to place a tighter constraint on
P using the O-C technique. One of the advantages of the direct method over
the O-C technique is that it does not suffer from cycle count errors in gaps

between data sets.

In figures 3.2 and 3.3, we have plotted the best determined periods vs. an av-
erage time for each data set for the 213 s and the 274 s doublets respectively.
The time in seconds is with respect to the same reference tzero as in the O-C
diagram. The following tables 3.4 to 3.7 give the best periods from individ-
ual sets along with the uncertainties. The table 3.8 gives the results from a
weighted linear least squares fit, where the weights are inversely proportional

to the uncertainty in period.

Another avenue that we explored was trying to pre-whiten 3 frequencies from
the data sets. The remnant frequency would then have much smaller uncer-
tainties for period and phase (Costa, Kepler & Winget 1999). That should
have solved our problem, leading to a better constraint on P. However, such
pre-whitening procedures for R548 can prove dangerous. Pre-whitening the
other doublet is a harmless matter. But, when we pre-whiten one frequency
in a doublet, we effectively modify the other one, since the pre-whitening fre-
quency is not exactly the same as the true frequency and the doublet is closely
spaced. This results in unreliable phases and the answer cannot be trusted.
So, this pre-whitening technique can only be applied to pulsation periods that

are far away from the period of interest.

Maximum Likelihood Estimation : There are possible cycle count errors
in the O-C tables C.1 and C.2, indicated for the 274 s doublet. If we could

reverse the clock and gather more data, as Ed Robinson had once suggested
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O-C | Error in O-C | Epoch Season
(s) (s)

-0.1 6.2 -2350444 1970
3.5 2.9 -1620300 1975
2.7 3.8 -864217 1980
0.0 4.2 0 1986
2.1 1.7 745148 1991
-1.1 3.8 1051200 1993
3.1 2.5 1927636 | Sep-Oct 1999
4.5 2.8 1952718 Nov 1999
-9.7 3.5 2071386 2000

Table 3.2: O-C table for Period 212.76842930 s and P = (—4.5 + 7.9) x 1079 s/s

Period P op
(s) 10719 s/s | 1071 s/s

213.132607 4.6 2.1

212.768429 3.5 3.6

Table 3.3: Results for Period and P from a Non-linear Least Squares Fit

Period op Season
(s) (10~%s)

213.132576 4.1 1970
213.132423 0.9 1975
213.132547 1.3 1980
213.132823 3.9 1986
213.131804 7.0 1991
213.131256 4.2 1993
213.132725 1.0 Sep-Oct 1999
213.131411 9.0 Nov 1999
213.133629 1.7 2000

Table 3.4: Best fits for Period 213.132 s from individual sets
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Period op Season
(s) (10~s)

212.768371 6.6 1970
212.768267 1.5 1975
212.768313 2.0 1980
212.768170 5.9 1986
212.778197 11.0 1991
212.769150 8.4 1993
212.768484 1.5 Sep-Oct 1999
212.766154 13.0 Nov 1999
212.770448 2.5 2000

Table 3.5: Best fits for Period 212.768 s from individual sets

Period op Season
(s) (10~s)

274.250359 9.1 1970
274.250501 2.1 1975
274.251657 4.0 1980
274.250586 6.9 1986
274.281072 22.0 1991
274.250889 11.0 1993
274.250844 2.6 Sep-Oct 1999
274.247696 25.0 Nov 1999
274.251187 4.1 2000

Table 3.6: Best fits for Period 274.25 s from individual sets

Period op Season
(s) (10~4s)

274.775408 12.0 1970
274.774109 3.2 1975
274.774513 6.0 1980
274.774011 8.5 1986
274.804359 28.0 1991
274.774715 17.0 1993
274.774015 3.7 Sep-Oct 1999
274.771008 31.0 Nov 1999
274.772920 5.4 2000

Table 3.7: Best fits for Period 274.77 s from individual sets
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Period op P op
(s) (s) 1077 s/s | 10717 s/s
213.132807 | 0.00008 1.6 0.2
212.769141 | 0.00014 2.8 0.4
274.251316 | 0.0002 18 0.5
274.774379 | 0.00024 -2.7 0.7

Table 3.8: Results from Direct Method using a Weighted linear least squares fit
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Figure 3.2.—: The 1991 data set spans over 5 days, while the other data sets are a
month long on average. Hence, it is not alarming to see that the 1991 data point does
not lie on the best fit within errors. Also, note that the errors are under-estimated
as has clearly been demonstrated in the Monte-Carlo section.
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to me, we could perhaps unambiguously declare both the sign and magnitude
of the P. Since this is not feasible, we could turn to statistics for the best
answer, but not necessarily the correct one, since we would be dealing with low
number statistics, 9 points to be exact. There do exist multiple techniques to
achieve this goal, the most elegant of which is called the Maximum Likelihood

Estimation (MLE).

MLE is a computationally cumbersome technique, which involves determining
the x? for each possible P and P solution, given the observed phases from
the various data sets. Initially, we would define a range of P and P values.
The resolution of these grids would be of the order of the uncertainties in P
and P respectively. For each possible (P,P) pair, we would initially determine
the epochs, given the observed set of phases. Using the P, we would then
determine the correction in period. Using all these values, we could then see
how well the observed phases fit and obtain a x? value. The global minimum
for x2 would be indicative of the best answer for period and P.If however,
the P term is significant, as suggested in the next chapter, then this technique
would have to be suitably modified to include a second order term. That

would take even more computation time.

3.3 Best Value for an evolutionary P

We conclude that the periods of the 213 s doublet are exceptionally stable. We
found that the 274 s doublet does not indicate cooling and so we will only focus
on the 213 s doublet. We measured P for both periods of the 213 s doublet using
the O-C technique, non-linear least squares fit and the direct method. Of these,
results from the non-linear least squares fit are most reliable as it utilizes all the
data to get a best fit. While, the O-C and the direct method base their answers

on 9 points and are in the domain of low number statistics. We obtained (4.6 +
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2.1) x 107 /s and (3.5 £ 3.6) x 107° s/s for the periods 213.13260565 s and
212.76842930 s respectively. Since these P values are only upper limits and not
yet true measurements, the uncertainties gain more importance than the numbers
themselves as they are indicators of reliability. So, our best value for an evolutionary
P for R548 is (4.6 +2.1) x 10715 s/s. Henceforth, we will be using this value for all

our subsequent calculations.

3.4 Other Possibilities regarding the 274 s Doublet

We conducted the following tests to eliminate some other possibilities, that maybe
causing the O-C diagram for the 274 s doublet to look different. Implications of
what could be going on with the 274 s doublet are discussed at length in the next

chapter.

1. Variations in P at time-scales of a few days to a month : We wanted
to check whether there were any variations in P at shorter time-scales like a
few days to a month, which averaged out over a longer time-span, but could
be enough to swamp out the parabolic shape of the O-C diagram for the 274
s doublet. We chose to investigate the 1999 data set, since it has the greatest
density of data and spreads over September, October and November. If the
pulsation period of the star varies at time-scales of a few days to a month, then
that would render itself as broader (broader compared to the corresponding
peaks in the window) peaks in the FT. We simulated a doublet with constant
periods and compared the FWHMs for the true peaks in the F'T to the FWHMs
from the real data set. We could not find any conclusive evidence that the
FWHMs in the real data set were wider and had to abandon the idea that any

such short term variations might have taken place.
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2. Interaction between the 213 s doublet and the 274 s doublet at
time-scales of a few decades : We checked whether the two doublets are
truly resolved in the chosen data sets. We pre-whitened the data sets, thus
eliminating the 213 s doublet as best as we could. (Some residual power will
always remain since the amplitudes are never accurately determined due to
gaps in the data and low signal to noise ratio. We found that the amplitudes
from the single site 3.6m CFHT data taken in 1991 were higher by about 1
mma compared to single site data on the 0.9m at McDonald Observatory).
Next, we obtained the phase information, using our best guesses for the 274
s period values, taken from the O-C diagram. We found that the phases did
not differ significantly. This shows that if there exists an interaction between
the two doublets, then it would have to be on time-scales longer than three

decades.

3.5 Monte-Carlo Simulation Technique for Improved

Errors

The value of P obtained for the 213 s doublet is only an upper limit and hence the
uncertainties become more important than the value itself. Costa, Kepler & Winget
(1999) demonstrated that the uncertainties obtained for phases from a linear least
squares fit are under-estimated. Costa (1996) used a method based on Monte-Carlo
simulations to derive more realistic values of op,. We did this computationally
cumbersome calculation for R548, since the doublets are closely spaced and we
could be severely under-estimating the uncertainties due to pattern noise. Such a
calculation will give us a better idea of the reliability of the phases for each individual

data set and thus of the P obtained.

41



3.5.1 The Technique :

The basic idea is to choose random values within the known uncertainties to generate
a pulsation spectrum similar to that of R548. Next, process the simulated light curve
in exactly the same manner as real data and then obtain a least squares fit. The
difference between the initially chosen values and the values obtained in the fit will
give us the true uncertainties. By repeating this process about 2000 to 2500 times,
we can plot an error distribution for period, phase and amplitude. The details are
given in the following paragraphs.

Initially, we select a frequency between 4689uH z and 46954 H z. This repre-
sents the first mode. Then, we add 8uHz to it and get the second pulsation mode.
This results in a doublet at a period close to 213 s and with the same spacing as the
corresponding one in R548. Next, we select amplitudes randomly within the ranges
5.4 - 6.6 mma and 3.4 - 4.6 mma for the 2 modes, such that the mode with the
higher period gets the higher amplitude range. Next, we select another frequency
between 3643uH z and 3649uHz. By subtracting 7uH z from it, we get the second
mode. Thus we generate another doublet at 274 s, and select amplitudes in the
ranges 3.4 - 4.6 mma and 2.4 to 3.6 mma, such that the mode with lower period
gets the higher amplitude range. Phases for all 4 modes are chosen in a range of 210
s, beginning from the first point of the data set under consideration. So, we have
randomly generated a pulsation spectrum similar to R548.

Next, we simulate a light curve using the periods, amplitudes and phases
that we chose. However, we also need to sample the data in a realistic manner
with gaps from daytime, clouds, etc. So, suppose we are considering the 1970 data
set, then the program that simulates the light curve also reads in the real 1970
data. The program will then generate a point of data only when there exists a
corresponding point in the real data set. This implies that the simulated data has

the same duration, the same gaps and the same data density as the real set. We also
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add Gaussian noise of amplitude 1 mma to it. Henceforth, we subject the simulated
data to a procedure exactly identical to real data.

Initially, we take an FT and identify the frequencies. We use these approxi-
mate values as input to the LLSPHB and NLSQHB programs, thus obtaining best
fits. However, it is neither practical nor feasible to actually take an FT 2500 x 9
times. So, what we feed in as input guesses to the least squares program are ran-
domly chosen numbers in a range of +1uHz of the true frequency. Giving a guess
value +1uHz away from the true frequency is conservative enough because the
resolutions of the corresponding FTs of real data sets are as good as 0.1uHz to
0.014Hz. One would naively think that if the resolution of the FT is 0.1uH z, the
true uncertainty in the frequency is only +0.1H 2. But, the true peak need not be
the highest one and hence the guess value needs to be given further away from the
chosen frequency.

The difference between the best fits obtained and the numbers used to simu-
late the data give us the true uncertainties. Repeating this entire procedure about
2500 times or so gives us an error distribution, which will reveal how under-estimated
uncertainties quoted by the NLSQHB program are. We can only emphasize the
importance of deciding how far away the guess value should be from the true fre-
quency. If we give a guess value that is too close to the right answer, we will be
under-estimating the uncertainties. If the guess value is too far away from the true
frequency, the least squares programs might have a severe convergence problem and
we could also end up over-estimating the uncertainties. So, it is necessary to feed
in a guess value that is realistic within the measured uncertainties.

We ran the entire simulation 2500 times for all the data sets. We came
across a convergence problem for a few of the data sets. For these, about 700-1200
iterations would not converge. In table 3.9, we have listed the number of iterations

that did not converge on the first guess, for each individual data set. We dealt with
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this problem by trying out a second guess for the non-convergent iterations. The
results from the second set of simulations are given in the third column. A fraction of
5-10% of non-convergent iterations are quite acceptable. We stopped trying different
guesses when the number of non-convergent iterations dropped below 250.

Now that we have a suitable number of simulations for each data set, we can
plot out histograms showing the error distribution in period, phase and amplitude
for each data set. The Half Width at Half Maximum (HWHM) of these distributions
is an error of 1o. Since we have four periods, we will get 4 sets of uncertainties for
period, phase and amplitude for each of the individual data sets. These are outlined
in tables 3.10 to 3.13. Comparing the values in one table vs. another allows us to
estimate the effect of the signal to noise ratio on the error distributions, since the 4
modes have different amplitudes. We have also listed the uncertainties given by the

non-linear least squares program for the real data sets in those seasons.

3.5.2 Period Error Distributions

The period error distributions definitely managed to surprise us, as shown in fig.
3.4. We originally suspected our programs and felt that our choice of periods might
be quantized, thus resulting in a quantized error distribution. We plotted out a
distribution of the randomly chosen periods. We also plotted out a distribution of
the periods from the best fits obtained. Both these histograms showed a random
distribution; but a difference of the two would always result in a non-Gaussian
quantized distribution. As we looked at the error distributions from different data
sets, we realized that the spacings between the peaks is of the order of % This
implied that we were looking at aliases, from gaps of the order of a month. This
high frequency structure is a manifestation only of the month-long gaps and it would
not be present for good multi-site coverage or for short data sets. We do find that

both our WET data sets from Sep-Oct 93 and November 1999 show a Gaussian
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the light curve and the best fit obtained
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error distribution. The short data sets such as 1991 also show a Gaussian error
distribution in period. That is evidently because they are only a week or 2 weeks
long and therefore should have no aliases from month long gaps.

The quantized or non-Gaussian error distribution is the chief cause of all the
convergence problems. Note that the 1991 and November 1999 data sets did not
have a convergence problem and both of them show Gaussian error distributions.
The 1975 data set did not have a convergence problem either, but the envelope of
the quantized error distribution looks Gaussian.

The immediate problem we faced was uncertainty quantification since we
did not have anything similar to a normal distribution. We then came up with the
following idea. Consider a generalized distribution which need not be Gaussian or
centered at zero, but it has to be somewhat symmetric. We start from a bin in the
histogram, about which the distribution is symmetric. We then move outwards in
both directions and stop only when we have accounted for 34% of the simulations on
either side. In between the two final bins lie the errors from 68% of the simulations
and we quote half of this number as a 1o uncertainty. Since the distribution is not
normal, 2 X ¢ will not account for the errors from 95% of the simulations. We will
have to repeat the same procedure and find an equivalent 20. When the distribution
is not symmetric, we choose the central bin such that there is equal area on both
sides. Please note that the central bin is chosen after looking at a print-out of the
histogram. It is very subjective and prone to error. The 1o uncertainties that we
quote have to be taken with a grain of salt, specially for non-symmetric distributions.

Examining the tables 3.10 to 3.13, we find that the uncertainties in period
are severely under-estimated by factors like 30 to 70 for quite a few data sets and
in some pathological cases, a factor of 100 and more. For seasons that showed a

Gaussian error distribution, the uncertainties are under-estimated by a factor of 2-4.
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3.5.3 Amplitude Error Distributions

A striking feature of most amplitude error distributions is that they are not cen-
tered at zero. This implies that the least squares program always under-estimates
the amplitudes. This is a systematic effect and it seems to be quite apparent for
composite data sets like Sep-Oct 99 and Aug-Sep-Oct 2000, as shown in fig. 3.5.

As we are plotting Acac — Ainput, it should be centered on zero, but we
notice a very definite pattern in all data sets that show an off-center distribution.
We find that the offset is largest for the high amplitudes as compared to the low
amplitudes. The offsets are listed in columns 8 in the tables to 3.10 to 3.13. This is
counter-intuitive.

To explore this systematic effect, we eliminated the 1 mma noise that we
add to the simulated light curve. Now, we are dealing with noiseless simulated light
curves with realistic gaps. When we plotted out the error distribution for amplitude,
we find that the systematic effect does not vanish. It is either a result of the gaps
or of the least squares programs. However, since we are able to get well-centered
Gaussian distributions for 1991, Sep-Oct 1993 and November 1999, we conclude that
this systematic effect is a result of the gaps in the data. Furthermore, we plotted out
an error distribution for the 4 periods, choosing only those simulations that resulted
in significantly lower amplitudes. The resulting plot is shown in fig. 3.6. Evidently,
these simulations have converged to an alias, which has a lower amplitude than the
true frequency. This results in a peak in the error distribution that is centered at
(A; — A,), where Ay is the amplitude of the true frequency and A, is the amplitude
of the alias.

We conducted a few other tests. For fig. 3.5, the amplitudes for the 213.132
s, 212.768 s, 274.25 s and 274.77s are in the ranges of 6 + 0.6, 4 + 0.6, 4 + 0.6 and
3 + 0.6 respectively. We simulated light curves with larger amplitudes than before
to study the amplitude correlation. We chose amplitudes for the 213.132 s, 212.768
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s, 274.25 s and 274.77s to be in the ranges 15 + 0.6, 8 £ 0.6, 8 = 0.6 and 6 & 0.6
respectively. The resulting error distribution showed peaks that were further away
from zero than before by a ratio ﬁ—;, where A; indicates the new amplitude and A,
indicates the earlier choice of amplitude. This has been shown in fig. 3.7. This
amplitude correlation can be easily explained. When we enhance the amplitude, we
are effectively scaling the whole window function to that new value. In other words,
we are altering the amplitude of the true frequency and the aliases as well. More
specifically, we are scaling the difference (4; — A,) by the ratio ﬁ—;. So, we should
expect a peak in the error distribution that is further away from zero by the amount
of scaling.

Next, we tried to see if this systematic effect persists when we run simulations
for a single frequency near 213 s and at 274 s, instead of doublets. We found that
the effect does remain as can be expected from our understanding of it. This clearly
implies that gaps in the data are more destructive than the fact that we are dealing
with a doublet. So, alias-noise is more harmful than pattern noise. This realization
leads us to appreciating the significance of instruments like the WET, which are a
must for studying periodic phenomena.

We found no traces of the systematic effect discussed above in the error
distributions for the 1991, Sep-Oct 1993 and November 1999 data sets. Instead,
they showed a random distribution centered at zero. This is due to white noise.
Imagine noise at a frequency similar to the pulsation modes. It can have a phase
that either adds to the pulsation amplitude or subtracts from it, thus resulting
in a normal distribution. There is, however, a small bias of over-estimating the
amplitude. This bias is proportional to the square of the random noise amplitude
and hence this is a really tiny effect. We do not see it in any of our distributions.

The uncertainties in amplitude are under-estimated by a factor of 1.5 to 5

or so, and in some cases, even by a factor of 10.
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Figure 3.7.—: Amplitude Error Distribution for Sep-Oct 99 from simulations with
enhanced amplitudes
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3.5.4 Phase Error Distributions

Most of the error distributions for phase show a near-Gaussian distribution, implying
that we could proceed with the Maximum Likelihood Technique. However, for the
1975 and Sep-Oct 99 data sets (fig. 3.8), we find a quantized error distribution that
shows multiple peaks instead of a single Gaussian peak. The size of the implied
error shows that the least squares programs under-estimate the error in phase by a
factor of 1.2 to 5 and in certain cases a factor of 30, depending on the sampling of
the data.

The first question that needs to be answered is whether our O-C analysis still
holds. It is not surprising to us that the phase uncertainties are under-estimated by a
factor of 10 on average. When we did the O-C analysis, we were always conservative
and considered the error to be 10 times larger than that shown by the least squares
fit. So, this does not change or modify any of the results.

Also, these uncertainties come from a non-linear least squares fit, wherein
the period, amplitude and phase for all 4 pulsation modes are simultaneously varied
to obtain the best fit. But when we do the O-C analysis, we use the phases from a
least squares fit. Intuition tells us that if we fix the period, we should expect the
uncertainties in amplitude and phase to be smaller than their counterparts from
the non-linear least squares fit, provided we have a good value for the period. The
uncertainties from linear least squares fit may also be under-estimated, but probably
not as severely. We use a period from bootstrapping the various data sets, and it is
far more accurate than periods from individual seasons. Another key-point is that
a significant fraction of the simulations converged to an alias and this resulted in
larger uncertainties in phase as well as amplitude. However, since we are certain that
we always had the right periods in all the data sets for the 213 s doublet, we should
re-evaluate the phase uncertainties, taking into account only those simulations that

converged to the right frequency. Please note that we can be so certain about
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knowing the right frequency since we have 3 decades of data on the star. A similar
statement may not be valid for the 274 s doublet since the periods are changing at
a rate that is at least a 100 times faster and hence it is possible that we are picking
out aliases in some of the data sets. That would affect the results of an O-C diagram

drastically.

3.6 New Pulsation Modes

We also found three additional pulsations around 187.27 s, 318.08 s and 333.65 s,
as indicated in figure 3.9. We believe they are real because we saw them clearly in
the FTs of quite a few independent data sets. Also, earlier multi-site observations
of R548 revealed power around 333 s, 320 s and 187 s, indicating the presence of
small amplitude pulsations (Kepler et al. 1995). These modes had been suspected
to exist for a long time now. Table 3.14 gives our best estimates for the periods and
amplitudes for the various years of observation.

The amplitudes of these modes is small enough that nailing down the precise fre-
quencies is difficult. With the discovery of three additional modes in R548, we now have 7

known modes. This would help in mode identification and lead to constraints in the stellar

structure, through asteroseismology.

3.7 Correction due to Proper Motion

Pulsating WDs also have a non-evolutionary secular period change due to proper motion.
The size of this effect on P was evaluated to be of the order of 107% s/s (Pajdosz 1995).
This effect is insignificant for the DOV and PNNV stars because their evolutionary P is
several orders of magnitude larger. However, it is of the same order as the P measured for
hot DAVs like R548 and G117-B15A. R548, at a distance of 55 parsec, does have a measured
proper motion. Any motion (with a uniform velocity) of a DAV along the line of sight will
manifest itself as a correction in the period estimate for the pulsations and will not affect P.

However, motion perpendicular to the line of sight is equivalent to a centripetal acceleration,
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Season Number of iterations that did not converge
First Guess | Second Guess | Third Guess | Fourth Guess

1970 1221 672 382 226
1975 151
1980 1170 602 313 160
1986 1173 557 275 139
1991 153
1993 874 299 109

Sep-Oct 1999 719 207

Nov 1999 247

2000 298 32

Table 3.9: Number of non-convergent iterations for the various data sets

Season op Oph oA Offset

(10~3s) (s) (mma) (mma)

MCS ‘ Real Data | MCS ‘ Real Data | MCS ‘ Real Data | MCS
1970 29 0.4 19 6 1.9 0.7 2.8
1975 30 0.09 40 1.4 1.1 0.2 1.5
1980 27 0.1 11.3 14 0.9 0.24 0.4
1986 27 0.4 46 12 0.75 0.5 0.3
1991 1.5 0.7 1.8 0.7 0.15 0.1 0

1993 23 8.4 28 26 0.6 2.34

Sep-Oct 1999 | 35.6 0.1 43.4 1.34 1.4 0.14 1.8
Nov 1999 0.55 0.9 1.5 2.5 0.1 0.18 0
2000 29 0.2 13.5 2.9 1.3 0.17 1.0

Table 3.10: 1o Uncertainties in period, phase and amplitude for the 213.1326 s
period
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Season op Oph oA Offset
(s) (s) (mma) (mma)
MCS ‘ Real Data | MCS ‘ Real Data | MCS ‘ Real Data | MCS
1970 31 0.7 30 9.0 1.7 0.7 1.8
1975 31 0.2 41 2.4 0.9 0.2 1.2
1980 30 0.2 14 2.3 1.1 0.24 0.2
1986 36 0.6 69 18 1.1 0.5 0.3
1991 2.5 1.1 2.7 1.14 0.15 0.1 0
1993 17.5 20 46 63 1.5 2.34
Sep-Oct 1999 | 34 0.15 47 1.9 1.1 0.14 1.3
Nov 1999 1.0 1.3 2.8 3.65 0.12 0.18 0
2000 29 0.3 31 4.2 1.25 0.17 0.7
Table 3.11: 1o Uncertainties in period, phase and amplitude for the 212.7684 s
period
Season op Oph oA Offset
(s) (s) (mma) (mma)
MCS ‘ Real Data | MCS ‘ Real Data | MCS ‘ Real Data | MCS
1970 45 0.9 28 10 1.2 0.6 1.8
1975 51 0.2 51 2.6 0.7 0.2 1.1
1980 47 0.4 16.3 3.0 0.85 0.2 0.3
1986 50 0.7 61 16 0.54 0.5 0.3
1991 4.1 2.2 3.5 1.65 0.16 0.094 0
1993 8.3 10.9 28.5 26 1.5 2.3
Sep-Oct 1999 | 59.4 0.3 55 2.7 0.85 0.14 1.4
Nov 1999 1.4 2.5 2.9 5.2 0.1 0.19 0
2000 49 0.5 11.6 5.2 0.96 0.16 0.8

Table 3.12: 1o Uncertainties in period, phase and amplitude for the 274.2508 s

period
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Season op Oph oA Offset
(5) (5) (mma) (mma)
MCS ‘ Real Data | MCS ‘ Real Data | MCS ‘ Real Data ‘ MCS
1970 50 1.2 40 13 1.1 0.6 1.4
1975 52 0.3 54 4.0 0.6 0.2 0.75
1980 50 0.6 21 4.5 0.9 0.2 0.3
1986 58 0.9 90 19 0.7 0.5 0.3
1991 6.6 2.8 5.2 2.1 0.17 0.094 0
1993 30.5 16.4 63 40 1.2 2.3
Sep-Oct 1999 | 58.5 0.4 57 4 0.9 0.14 1.2
Nov 1999 3.7 3.1 7.3 6.4 0.13 0.19 0.01
2000 49 0.7 27.5 7.1 0.9 0.16 0.7
Table 3.13: 1o Uncertainties in period, phase and amplitude for the 274.7745 s
period
| 1991 | 1993 | Sep-Oct 1999 | Nov 1999 | 2000
Period (s) 187.272 | 187.267
Amplitude (mma) 0.93 0.85
Period (s) 318.049 318.075 318.082 318.080
Amplitude (mma) 0.85 0.93 0.82 0.67
Period (s) 333.636 333.642 333.634 | 333.668
Amplitude (mma) 0.64 0.51 1.31 0.67

Table 3.14: New pulsation modes
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with Earth as the reference. This causes a Ppm. Pajdosz (1995) has evaluated this to be:

. Pu
Py = :T (3.12)

Pajdosz (1995) evaluates the tangential acceleration to be

2
. (Y
Up = Tt (3.13)

He concludes that it is always positive and hence the proper motion correction must
always be subtracted from the measured P. We disagree because this is based on a model
of the WD revolving around the Sun. With this model, you would always get a centripetal
acceleration directed towards the Sun. We contend that the tangential acceleration can
be positive or negative depending on the motion of the WD, thus flipping the sign of the
correction term accordingly. This issue needs to be investigated thoroughly and we will do
So pretty soon.

Pajdosz (1995) evaluates the correction for proper motion to be

Pym = 243 x 1078 P[s](u[” /yr])* (x[?]) (3.14)

where p is the proper motion and = is the parallax. Using u = 0.236” /year and = = 0.013”
(Pajdosz 1995), we have evaluated the P,,, for the 4 periods as indicated in table 3.15.

Period Py op .

(s) 107 g/s | 10719 /s
213.13260565 2.22 0.36
212.76842930 2.22 0.36
274.25080355 2.86 0.46
274.77450046 2.86 0.46

Table 3.15: Correction to P due to Proper Motion

At least in the case of the 213 s doublet, the proper motion correction is comparable
t0 Pops. S0, the true Peooing for the 213 s doublet could be (2.4 +2.1)107'% s/s or (6.8 +
2.1)10 1% s/s. This is still a constraint on the evolutionary models. Bradley (1996) gives a
theoretical 3o upper limit of P<65%x10715 ¢ /s, for R548, corresponding to a time-scale
> 1.2 Gyr.
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Chapter 4

Discussion of the Results in an

Astrophysical Context

In this chapter, we will discuss the results of measuring an evolutionary P = (4.6 + 2.1) x
1071 s/s for R548. We found the O-C diagram for the 274 s doublet to be different from
the 213 s modes. We also discovered some new pulsation modes. We will now be taking a

look at some of the implications and applications of this work in an astrophysical context.

4.1 P obtained for the 213s doublet

We conclude that the P < (4.64+2.1)10715 s/s is consistent with cooling. Detailed theoretical
calculations using evolutionary models (Bradley, Winget & Wood 1992) as well as the P
measurement for G117-B15A indicate similar values. We have therefore achieved our goal of
constraining stellar evolution. The stability of these modes, both the 215 s mode in G117-
B15A and the 213 s doublet in R548, is simply amazing and there is a plausible explanation
for that.

4.1.1 Stability of the 213 s Doublet

The HDAV (Hot DAV) stars, which include R548, exhibit extreme amplitude and frequency

stability, making them reliable clocks. This stability maybe associated with two different
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effects: low k modes and mode trapping.

1. Low k Modes: Low k modes sample the deep interior and thus have a rate of period
change that reflects cooling alone. High k modes have regions of period formation
further out in the star and so can be easily affected by magnetic fields, rotation,
convection and non-linear interactions among other effects. Using P = 4.6 x 10~15
s/s, we calculate the evolutionary time-scale P/P to be 1.5 Gyr. Bradley (1996) gives

a 30 upper limit of P < 6.5 x 1071 s/s, corresponding to a time-scale > 1.2 Gyr.

2. Mode Trapping : In WDs, compositional stratification occurs due to gravitational
settling and prior nuclear shell burning. Hydrogen, if present, floats on the surface
long before the WD reaches the DAV instability strip. In such WDs, there is a me-
chanical resonance effect between the local g-mode oscillation wavelength and the
thickness of one of the compositional layers (Wood & Winget 1988). This mechanical
resonance serves as a stabilizing mechanism in model calculations. The resonantly
trapped modes are more stable than un-trapped modes. For a mode to be trapped
in the outer H layer, it needs to have a resonance with the He/H transition region,
such that its vertical and horizontal displacements both have a node near this inter-
face (Montgomery 1998; Brassard, Fontaine, Wesemael & Hansen 1992). Note that
the H/He interface can also result in confinement or trapping of modes in the core.
Mode trapping has the greatest effect when a mode is trapped in the outer envelope
(Bradley 1993). Trapped modes are energetically favored, as the amplitudes of their
eigenfunctions below the H/He interface are smaller than un-trapped modes. Modes
trapped in the envelope can have kinetic oscillation energies lower by six orders of
magnitude, as compared to the adjacent non-trapped modes (Winget, Van Horn &
Hansen 1981). This filter mechanism may very well explain why all the modes ex-
pected from theoretical models are not actually observed in the ZZ Ceti stars (Winget,
Van Horn & Hansen 1981; Brassard, Fontaine, Wesemael & Hansen 1992). The pe-
riod spacing between trapped modes depends directly on the location of the H/He
discontinuity in models and therefore on the thickness of the outer hydrogen layer
(Brassard, Fontaine, Wesemael & Hansen 1992). Theoretical calculations indicate

that trapped modes should have a P smaller than that produced in the un-trapped
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modes due to cooling by a factor < 2 (Bradley, Winget & Wood 1992; Bradley 1993).

If the 213 s doublet in R548 consists of trapped modes, then indeed we could be
measuring the stability of the trapping mechanism and not the cooling. Bradley (1998)
identified the 213 s doublet as =1, k=2. This suggests that the modes are stable because
they are low k modes and we are measuring a P due to cooling. However, low k modes can
also be trapped. Since we have an upper limit for P and not yet a true measurement, we
cannot tell whether or not these modes are trapped.

The uncertainties in measuring P go down as the square of the time-base. This
implies that to decrease the uncertainties by a factor of 10, we would need about 90 years of
data! One way to do this in a lifetime is to get more accurate values for the phases, which
can be achieved using a bigger telescope or a longer data set, (remembering that we must
have 35-40 hours to resolve the 2 doublets and that the 1991 data set already includes 3.6m

CFHT data), every few years or even every decade.

4.2 P indicated for the 274 s Doublet

The implied P from the O-C diagram for the 274 s doublet is a 100 times larger than
the P for the 213 s doublet. It is thus different from the 213 s doublet and therefore
unexpected. We should remind ourselves that the two doublets sample different regions of
the star. Theoretical evolutionary models imply that P should be positive and of the order
of 10715 s/s. We do not know yet what the O-C diagram implies, but we know that it is not
consistent with cooling. By looking at the periods obtained in the various FTs, we can plot
P vs. time. The maximum slope AA—It) possible after accounting for the uncertainties gives us
an upper limit on the P value, provided the uncertainties are not severely underestimated.
This limit turns out to be 10~!! s/s. The minimum dispersion in the O-C diagram, which
does not fit a parabola, allows us to set a lower limit 42 ~ 107! s/s. The uncertainties
maybe underestimated by a factor of 10. Taking that into account, our upper limit changes
to 5 x 107! s/s. To be extremely conservative, we could limit the time-scale to be between
5x 107" s/s and 10~ s/s.

Some possibilities of what could be happening are :
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1. An Avoided Crossing : Modes of differing k sample slightly different regions in the
star with correspondingly different evolutionary time-scales. Hence, we expect each
mode to have a different rate of period change (Wood & Winget 1988). Consider two
such modes, one changing faster than the other. If the two modes have frequencies
very close to each other, then it is possible to interchange their natures. Such an
interaction is termed as an avoided crossing (Aizenman, Smeyers & Weigert 1977;
Christensen-Dalsgaard 1981). Stable modes can thus become unstable after such
an avoided crossing (Montgomery & Winget 1999; Wood & Winget 1988). In other
words, if you were monitoring the P for any of these modes, you would observe a rapid
change during the crossing, i.e., the P term would be important. Montgomery and
Winget (1999) have done the most detailed calculation to date, showing how the g-
mode periods evolve as the crystallized mass fraction is slowly increased. Their results,
plotted in fig. 9. of their paper, clearly show many “kinks” or avoided crossings.
Wood & Winget (1988) also saw similar behavior in their evolutionary calculations,
when they included H and He layers in their models. The 274 s doublet in R548
could be undergoing an avoided crossing, but this issue needs to be investigated more

thoroughly.

2. Short term Phase Variations : It is possible that the 274 s doublet is unstable
because it samples regions of the star that could be undergoing changes at time-scales
shorter compared to 3 decades. We may have variations in P at short time-scales
of the order of a few months to a few years, super-imposed on the secular cooling.
(Note that we investigated for variations in phase at time-scales from a few days to a
month or so and found none). Possibly, such short-term behavior averages out in the
long run, since from figure 3.3, we can see stability at some level. We cannot place
any limits on the short-term behavior, as we have large gaps between data sets. Such
short-term phase variations could render a parabolic fit to the O-C diagram difficult,

thus swamping out P due to cooling.

We hope to eventually attempt to unravel this mystery, by getting both multi-site
and extensive single-site data in a season. Since both the 213 s doublet in R548 and the

215 s mode in G117-B15A show the same P, it would be worthwhile to find out if the 270
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s mode in G117-B15A misbehaves like the 274 s doublet in R548. If so, then it would be a
vital clue. We would like to request the readers of this document to contact us, if they have

any archival data on R548. We would really appreciate it.

4.3 Implications and Applications

The various implications and applications brought about as a result of this work are as

follows .

1. Aiding White Dwarf Cosmochronometry : The P value is an upper limit
on the rate of cooling. This helps in constraining theoretical evolutionary models.
Along with the P measurements for PG-1159 (Costa, Kepler & Winget 1999) and
G117-B15A (Kepler et al. 2000), we can calibrate the cooling curve. This will result
in more accurate ages for a WD. This will reduce one of the theoretical uncertainties

in WD cosmochronology, as explained in the introduction.

2. Reliable Clock : WDs such as R548 and G117-B15A are the most reliable clocks
known . They are more stable than atomic clocks, pulsars, etc. We assume that
the atomic clock is perfect and determine a P on that basis. Since we are able to
measure a stability of order 1071° s/s for pulsating WDs, we can safely conclude that
the uncertainty in atomic clocks is smaller than 107!* s/s (as claimed by NIST) by
at least a factor of 2. There is one millisecond pulsar PSR 1937+21 that does match
these amazing WDs in stability (Rawley, Taylor, Davis & Allan 1987). Its frequency
stability is at least as good as 6 x 10714 for averaging times longer than 4 months.
It has a period of 1.56 ms and a measured P = 0.11 x 10 !8 s/s (Kaspi, Taylor &
Ryba 1994c). The relevant time-scale is then P/P ~ 4.5 Gyrs. The evolutionary
time-scale that we computed for R548 is 1.5 Gyrs. R548 can be used to measure the
relative drift of atomic clocks, pulsars and even G117-B15A. R548 can also be used

to calibrate GPS software.

3. Core Composition : The rate of cooling of a WD depends on core composition
and stellar mass. There is a family of cooling curves for different core compositions.

The heavier the core, faster it cools. By estimating the rate of cooling for R548,
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and by comparing it to theoretical evolutionary models, we are effectively measuring
the mean atomic weight of the core, A. Bradley, Winget & Wood (1992) obtained
theoretical P values around 5 -7 x10715 g /s from detailed calculations for un-trapped
modes in O core 0.5 Mg models with periods close to 215 s. This implies that our
current limit of 4.6 x 10~'® s/s indicates a C/O core and eliminates substantially

heavy cores like Fe or Mg, for example.

Crystallization and Phase Separation : For a 0.6 Mg Wood (1992) model, the
onset of crystallization is at T, ¢y = 6000 K for a C core (tcoo ~ 2 Gyr, L ~ 10738 L),
and at Tepy = 7200 K for an O core. These temperatures are much cooler than the
DAV instability strip from 11000-12000 K. So, ordinarily, one would not be able to
study effects such as crystallization and phase separation using P values for the DAVs.
However, massive stars like BPM 37093 (M ~ 1 M) should be crystallized pulsators
(Winget et al. 1997; Montgomery & Winget 1999; Nitta et al. 1999) and provide us
with a unique opportunity to study these effects. (Spectroscopic logg values suggest
that R548 has a mass of 0.52 Mg (Bergeron et al. 1995) and therefore it is clearly
not a crystallized pulsator). Crystallization affects P in the following ways; it releases
latent heat and delays the cooling and, secondly, the outward moving crystallization

front causes the periods to increase.

When faced with uncertainties like crystallization and phase separation, we can scale
our measurements to compute the evolutionary P expected of a massive WD. The
observed P of a crystallized pulsator should be a sum of PCWS and Pcooling and is
expected to be measurable with a 10 year baseline. Montgomery (1998) calculated
P..ys to be ~ 7 x 1071 s/s for periods less than 1000 s and ~ 5 x 10~'% s/s for
periods between 500 - 700 s. By comparing the observed P of a crystallized pulsator
with the evolutionary P expected of a massive WD, we could estimate the size of
effects like crystallization and phase separation. Note that there is yet no proof to
demonstrate that BPM 37093 is crystallized. The existent data is not sufficient for
a P measurement. There are no other known candidates for crystallized pulsators,
though the massive WDs discovered in the various surveys are a good starting point

to look for one.
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Orbital companion : If R548 had an unseen orbital companion, another star or a
planet, then its motion about the center of mass of the system would manifest itself
as a sinusoidal variation of the arrival time of maximum pulsation. This sinusoidal
variation could, in principle, be distinguishable from the parabolic signature due to
cooling of the WD. This could serve as a means of detection of planetary systems
or other binary companions. The period of the sinusoid would be the orbital period
and the amplitude of the sinusoid would help in deducing the mass and/or distance
of the orbital companion. The deviation from a sine curve would tell us something
about the ellipticity of the orbit and the angle of inclination of the orbit in the sky.
A Doppler effect that would result from the orbital motion of the clock would cause

a P,y (Kepler et al. 1991), given by

P Gm

Py = ——— 4.1
b a2 (4.1)

where P is the pulsation period, m is the mass of the orbital companion and a is the
separation between the components. The P,.; is not caused by the motion towards
or away from us, but by the acceleration in the motion. Any uniform motion along
the line of sight would just be interpreted as a correction in pulsation period, AP.

The O-C diagrams for R548, G117-B15A and L19-2 do not show any discernible
sinusoidal variations. G117-B15A is in a binary system, but the orbital companion
with a mass of 0.39 Mg and a separation of 925 A.U. is not detectable using the
O-C technique (Kepler et al. 1991). We can set the following limits on the physical
parameters for an orbital companion. Suppose that the O-C diagram consists of
points that span 3 decades and have an average spacing of a year. We observe the
DAV at about the same time of the year, so we are de-sensitized to observing an
orbital period of a year, as we would find it to be in the same phase every orbit.
Suppose the orbital period is shorter than a year, then every O-C point would sample
it in a different phase and we would be able to uncover such a pattern eventually.
The orbital period could only be longer than 6 decades, if no sinusoidal variations or
the like are seen. Using this limit on the period and Kepler’s third law, we then set
a limit on the orbital radius r for the companion. The amplitude A of the sinusoid

(orbital light travel time) is less than the average uncertainties of the points in the
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O-C diagram and hence we do not detect it. This sets a limit on the orbital radius r4
for the DAV, which also has to go around the common center of mass of the system

with the same orbital period P.
(24)c = 2r, sin(i) (4.2)

where i is the angle of inclination. Note the role played by the angle of inclination.
If the plane of the orbit is perpendicular to the line of sight, then we will not see a
sinusoid in the O-C diagram. In that context, the limits that we are setting on the
mass and radius of the orbital companion have a factor from the angle of inclination,
entangled with them. Remembering that the orbital radii should be in inverse ratio
of their masses, we have

— = (4.3)

We can now set a limit on the mass m of the orbital companion. Note that the orbital
separation a is the sum of r and r,. Let us find out the sensitivity of detecting an
orbital companion using this technique. We could ask if we can detect planets like

Earth at 1 A.U. For a period of 213.132 s, equation (3) gives

EBarth _ 213.132s 6.6 x 10711 Nm?/kg? - 6 x 102*kg

- 4.4
orb 3 x 108 m/s (1.5 x 1011 m)? 44
PEarth — 125 x 10719 s/s (4.5)

This technique is ultimately sensitive enough to find planets like Earth at 1 A.U. as
the P, is about 5 times larger than Pcoo”ng. For a planet like Jupiter (M = 318 Mg)
at 5.2 A.U., we have

ot 1
Plupiter — 125 x 10—153—82 (4.6)
(5.2)
PPt — 15 % 10718 s /s (4.7)

Thus, planets the size of Jupiter at 5 A.U. are easier to detect than Earth-like planets
at 1 A.U. If R548 were to be in a binary system with a brown dwarf (M, = 0.08 M),
then what could be their maximum separation for the brown dwarf to be detectable,

assuming that the plane of the orbit is not perpendicular to the line of sight. The
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angle of inclination plays a role in the size of Py, apart from the mass and size of

the orbital companion.

26635
a? sin 42

9.2x 107 =125x10""° (4.8)

where we have assumed the total upper limit of the observed P ~ 9.2 x 1073 to be

due to binary nature, and a mass for the companion of 26 635 Mg (0.08M).

Amax Siné = 190A4.U. (4.9)

We will be able to detect a brown dwarf companion of 0.08 Mg even at a distance of
190 A.U. at the very least. For other values of the angle of inclination, we might be

able to detect a brown dwarf at greater distances than 190 A.U.

Asteroseismology : With the discovery of three new modes in R548, we now have
7 known modes. This would help in mode identification and lead to constraining the
stellar structure, through asteroseismology. It would also assist Kleinman, Kawaler

& Bischoff (2000) in their work on ensemble asteroseismology of DAVs.

Metcalfe, Nather & Winget (2000; in press) have applied an optimization method
utilizing a genetic algorithm for fitting white dwarf pulsation models to asteroseis-
mological data. They are using this global approach to investigate the completeness
and adequacy of our understanding of the principles governing white dwarf interiors
by parameterizing the constitutive physics of our models and using a genetic algo-
rithm to search for all of the solutions that produce observationally indistinguishable
behavior. To make these calculations practical, they have configured a specialized
computational instrument, a meta-computer. The idea is to use period spacings, de-
rived from observed periods in WDs, as a criterion for estimating the x2 of how the
models fit the observed data. By changing the input physics and parameters that go
into a model and by observing how the fit improves or degrades, they are actually do-
ing the inverse problem. For the success of this technique, they require at least 7 to 8
observed modes. With the additional modes discovered in R548, they can now tackle
it. R548 demonstrates sinusoidal variations and is a linear pulsator. This makes it an

attractive candidate for such work.
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4.4 Future Work

1. Improving the P value for the 213 s Doublet : The error in P goes down as
the square of time. So, we will continue to derive a better value by extending our

time-base of observations. This is effectively a life-time side project.

2. Unraveling the 274 s Doublet : There is also something very exciting going on
with the 274 s doublet. We need to investigate this doublet, both theoretically and

observationally as well.

3. Ensemble Asteroseismology : Since both the 213 s doublet in R548 and the 215
s mode in G117-B15A show the same P, it would be worthwhile to find out if the 270
s mode in G117-B15A misbehaves like the 274 s doublet in R548.

4. Maximum Likelihood Estimation : As was clearly pointed out in earlier sections,
we already assume something about the size of P before we measure it. To do a more
objective and assumption-free search for the true solution in a P, P grid defined
over a reasonably large parameter space, is one of our future goals. This may prove

important for the 274 s doublet.

4.5 Conclusion

Our best upper limit for P for R548 is (4.6 £ 2.1) x 103 s/s, which constrains secular
cooling. Using P = 4.6 x 10715 s/s, we calculate the evolutionary time-scale P/P to be 1.5
Gyr. Bradley (1996) gives a theoretical 3o upper limit of P < 6.5 x 10~'% s/s, corresponding
to an evolutionary time-scale > 1.2 Gyr.

The 274 s doublet behaves differently than the 213 s doublet. For both modes of
the 274 s doublet, we could never achieve a clear minimization of phase dispersion. The
uncertainties in phase are larger for the 274 s doublet as it has a lower amplitude compared
to the 213 s doublet. However, both 212.768 s and 274.25 s periods have similar amplitudes.
Rather, the O-C diagrams are suggestive of behavior, apart from cooling. We obtain an
0O-C diagram with ambiguous cycle counts and all the points do not lie on a parabola within

error bars. This can lead to a plausible thought that P for the 274 s doublet is not constant
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and the P term is significant. If so, then we could be seeing something very exciting, that

needs further investigation.

That’s all folks!
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Appendix A

A.1 Bootstrapping for the Period 213.13260656 s

We present bootstrapping values for the 213.132 s period. We decided to start from 1970
since there were quite a few data sets in that decade and it would be easier to initiate the
bootstrapping process. Note that we have not explicitly stated the corrections in period
at each stage. When we looked at individual data sets, we found that we could bootstrap
between most gaps expecting cycle errors up to £2. When we do the actual bootstrapping
with a period that improves with each step and is far more accurate than individual seasons,
we know for certain that if we check for cycle counts up to +2, we will be fine. This is true

for both periods of the 213 s doublet.

A.1.1 Bootstrapping from 1970 to 1975

The respective periods from individual data sets in 1970 and 1975 were 213.132576 £+ 4.1 x
10~* s and 213.132423 + 8.9 x 10~° 5. A gap of 5 years will have about 739821 cycles.
Multiplying the error in period by the number of cycles will yield the error in the calculated
value of phase. It turns out to be 66 s or 0.3 cycles, if we bootstrap from 1975 to 1970.
If we go the other way from 1970 to 1975, the error in calculated phase becomes 303 s or
1.4 cycles. If the uncertainties in phases are truly underestimated by the least squares fit,
then the true error could be larger than 1 or 2 cycles, rendering it difficult to nail down
the number of cycles in the gap. We faced a problem in bootstrapping from 1975 to 1970.
With hindsight, we can see that the period from 1970 is closer to the true period than 1975,

though it has a larger error. True period only implies the best value that we could obtain
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from 30 years of data on R548. However, luckily for us, when we plotted five O-C diagrams
and checked for cycle errors up to £2, we could easily spot the correct number of epochs
between 1970 and 1975. The unambiguous number of epochs from 1970 to 1975 for period
213.132604 s turned out to be 728897, as seen from figures A.2 to A.6.

72



C i O-C | Epoch | Season
=z, L BN
< 1 700 0 1970
o T g 20.0 | 728897 1975
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o =2><10°% 4 >< 1 0° S><10°

Figure A.1.—: O-C Diagram for Period = 213.132576 s for data sets 1970 & 1975

From the O-C diagram in fig. A.1, we obtain the following corrections to P for the five
possibilities E, E+1 and E£+2. We have neglected the P term in computing these corrections.

Epoch Correction in Period | New Period
(1075 ) (s)

E-2=728895 61.231 213.133188

E-1=728896 031.9905 213.132896

E=728897 2.75002 213.132604

E+1=728898 -26.4904 213.132311

E+2=728899 -55.7307 213.132019

Table A.1: Corrections in Period for varying cycle counts between 1970 & 1975

The smallest correction in period has been obtained for E = 728897 and is already sugges-
tive of the right answer. We will see if this mathematical expectation tallies with the O-C
minimization. To help us pick out the right answer, we have also plotted a point corre-
sponding to the 1980 data set, though it has not been utilized in the calculations. Please
note that whenever you come across a point marked with a cross on the O-C diagram, it
indicates additional information being displayed and the data set has not been utilized in
the calculations for that subsection. But that data set will be utilized in the next subsection
and its epoch will be varied to yield minimum phase dispersion.

O-C | Epoch | Season
(s)
0.0 0 1970
0.5 728895 1975

-11.4 | 1483684 | 1980

X

{

0
HH‘HH‘HH‘HH

)

I
5><1 0% 10 1.5>=10°
Eroch

|
[
0

0

Figure A.2.—: O-C Diagram for Period = 213.133188 s for E-2
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B E O-C | Epoch | Season
_°F E L)
To - - - 700 0 1970
e | T4 0.1 | 728896 | 1975
By . _ 1 -5.3 | 1483686 | 1980

Epoch 1.8>=10

Figure A.3.—: O-C Diagram for Period = 213.132896 s for E-1

F E O-C | Epoch | Season
=°F EC)
Lo b - = 0.0 0 1970
—a0 B = -0.4 | 728897 1975
B . . S 1.0 | 1483688 | 1980

Epoch 1.8>=10

Figure A.4.—: O-C Diagram for Period = 213.132604 s for E

F E O-C | Epoch | Season
_F - _6)
Z e - - - 0.0 0 1970
e B = -0.3 | 728898 1975
. E . ‘ E 8.6 | 1483690 | 1980

0

10° 1. 5>=<10°

EBErcockh

Figure A.5.—: O-C Diagram for Period = 213.132311 s for E+1

E RE O-C | Epoch | Season
oo EL)
Zo - - 4 T00 ] o0 1970
Che = -0.1 728899 1975
. E. - ‘ B 14.9 | 1483692 1980

0

10° 1. 5>=<10°

EBErcockh

Figure A.6.—: O-C Diagram for Period = 213.132019 s for E+2

A.1.2 Bootstrapping from 1975 to 1980

Having established that the cycle count between 1970 and 1975 is positively 728897, we
obtain the new corrections to Period by varying the cycle count between 1975 and 1980.
Again, though we plot a point for 1986, it is just additional information being displayed
and that point does not play a role in any of the calculations. The new period estimates
are tabulated below.

Using these period estimates we plot O-C diagrams, shown in fig. A.7 to A.11. We can
clearly see that E=1483688 is the correct number of epochs for the 1980 data set.
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Epoch Correction in Period | New Period
(1072 s) (s)

E-2=1483686 23.1843 213.132836

E-1=1483687 011.6122 213.132720

E=1483688 0.04008 213.132604

E+1=1483689 -11.532 213.132489

E+2=1483690 -23.1042 213.132373

Table A.2: Corrections in Period for varying cycle counts between 1975 & 1980

X

E - B O-C | Epoch | Season
S0 E - e (S)
o - = 0.0 0 1970
E B 43.6 | 728896 1975
= — 83.1 | 1483686 | 1980
5 . ‘ ‘ ‘ 1 91.0 | 2346425 | 1986

5> 10°%

Figure A.7.—: O-C Diagram for Period = 213.132836 s for E-2

I
e = e
18n e dy®><10° =><10

c B O-C | Epoch | Season
=e E - ERC)
o Fo E 0.0 0 1970
- 1 85.0 | 728897 | 1975
- —  41.8 | 1483687 | 1980
L e ‘ 1 -61.1 | 2346427 | 1986

S5><1 0%

Figure A.8.—: O-C Diagram for Period = 213.132720 s for E-1

Il
1]8;oc11i5><106 =>=10°

E B O-C | Epoch | Season
R = e (S)
o[- - - e 0.0 0 1970
E ] -0.5 | 728897 1975
= — 0.4 | 1483688 1980
c . ‘ ‘ ‘ ] 0.0 | 2346428 1986

5> 10°%

I
e = e
18n ody®><10° =><10

Figure A.9.—: O-C Diagram for Period = 213.132604 s for E
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O-C | Epoch | Season
(s)
0.0 0 1970

83.1 | 728897 1975

-42.3 | 1483689 | 1980
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'
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Figure A.10.—: O-C Diagram for Period = 213.132489 s for E+1

O-C | Epoch | Season
(s)
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-45.5 | 728898 1975
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-93.3 | 2346431 1986
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'
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= Poodn®™ =

0

Figure A.11.—: O-C Diagram for Period = 213.132373 s for E+2

A.1.3 Bootstrapping from 1980 to 1986

Using the O-C diagram in fig. A.9, we obtain the following corrections to P for the five
possibilities E, E£+1 and E+£2.
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Epoch Correction in Period | New Period
(1072 s) (s)

E-2=2346426 12.144 213.132725

E-1=2346427 6.0736 213.132665

E=2346428 0.00319 213.132604

E+1=2346429 -6.0672 213.132543

E+2=2346430 -12.1376 213.132483

Table A.3: Corrections in Period for varying cycle counts between 1980 & 1986

0-C (s)

— 50

B 3 O-C | Epoch [ Season
so [ 0

. . ] 0.0 0 1970
o - | -88.6 | 728897 | 1975

- 1 344 | 1483687 | 1980

o i T 729 | 2346427 | 1986

EL - . ... ... 6203090300 | 1991

— 50

Figure A.12.—: O-C Diagram for Period = 213.132725 s for E-2

- R B O-C Epoch | Season
50 ; —: (S)

. ™3 0.0 0 1970

= ] -44.9 | 728897 1975

F ) 1 -89.8 | 1483688 | 1980

F B 68.95 | 2346427 1986

£ N S L i 33.8 | 3090301 1991

— 50

Epoch

Figure A.13.—: O-C Diagram for Period = 213.132665 s for E-1

- ] O-C | Epoch | Season
so [ 4 _ )

. 7 0.0 0 1970

- - - - = -0.5 | 728897 | 1975

- 1 0.4 | 1483688 | 1980

- B 0.0 | 2346428 | 1986

. T 8.6 | 3090302 | 1991

Epoch

Figure A.14.—: O-C Diagram for Period = 213.132604 s for E
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O-C | Epoch | Season
(s)
0.0 0 1970

43.9 | 728897 1975

90.8 | 1483688 | 1980

-68.9 | 2346429 | 1986

-16.5 | 3090303 | 1991

X

0
TTTT ‘ TTTT ‘ TTTT ‘ TTTT
]

[ o
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10° 2> 10° 3><10
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Figure A.15.—: O-C Diagram for Period = 213.132543 s for E+1
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O-C | Epoch | Season
(s)
0.0 0 1970

87.5 | 728897 1975

-33.4 | 1483689 | 1980
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‘)(

0
TTTT ‘ TTTT ‘ TTTT ‘ TTTT
]
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Figure A.16.—: O-C Diagram for Period = 213.132483 s for E+42

From figures A.12 to A.16, we conclude that E=2346428 is the correct number of cycles for
the 1986 data set.

A.1.4 Bootstrapping from 1986 to 1991

From the O-C diagram of fig. A.14, we obtain the following corrections to P for the five
possibilities E, E+1 and E£2.

Epoch Correction in Period | New Period
(107° s) (s)

E-2=3090300 7.5569 213.13267957

E-1=3090301 03.85426 213.13264254

E=3090302 0.15158 213.13260552

E+1=3090303 -3.5511 213.13256849

E+2=3090304 -7.2538 213.13253146

Table A.4: Corrections in Period for varying cycle counts between 1986 & 1991

78



100 — - = O-C | Epoch | Season
oo [ e

B - E 0.0 0 1970
Zo k. o -55.6 | 728897 | 1975
S F 1 101.7 | 1483687 | 1980
—so [ o 34.5 | 2346427 | 1986

B 1 -11.1 | 3090301 | 1991
100 - ., . . .. ..~ -3821]3395831 | 1993

10° Epozcﬁloe 3><10°
Figure A.17.—: O-C Diagram for Period = 213.13267957 s for E-2
oo T T T=t 4 0-C [ Epoch | Season
o | Eq)

B E 0.0 0 1970
=20k 4 -28.6 | 728897 | 1975
s . 1 -56.7 | 1483688 | 1980
_so [ . S -91.1 | 2346428 | 1986

B 1 103.1 | 3090301 | 1991
100 |-, T R 87.4 | 3395831 | 1993

10° Epoecﬁloe 3= 10°
Figure A.18.—: O-C Diagram for Period = 213.13264254 s for E-1
100 — = O-C | Epoch | Season
o | S

B E 0.0 0 1970
=20k . . ) - .1 -1.64 | 728897 | 1975
< F 1 -1.8 | 1483688 | 1980
_so [ T -3.6 | 2346428 | 1986

B 1 3.97 | 3090302 | 1991
100 L L. =1 -0.35 | 3395832 | 1993

10° =Zx10° 3> 10°
Epoch

Figure A.19.—: O-C Diagram for Period = 213.13260552 s for E

Epoch Correction in Period | New Period
(1075 ) (s)

E-2=3395830 4.9326 213.13265485

E-1=3395831 02.4641 213.13263016

E=3395832 -0.0044 213.13260548

E+1=3395833 -2.4729 213.13258079

E+2=3395834 -4.9414 213.13255611

Table A.5: Corrections in Period for varying cycle counts between 1991 & 1993
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100 - . = 0-C Epoch | Season

B i ] (s)

50 — —

r R ] 0.0 0 1970
=00, 1 253 | 728897 | 1975
= F E 53.04 | 1483688 | 1980
—s0 [ - 84.0 | 2346428 | 1986

. ] -95.0 | 3090303 | 1991
100 |, L T -88.0 | 3395833 | 1993

10° Epozcﬁloe 3><10°
Figure A.20.—: O-C Diagram for Period = 213.13256849 s for E+41
100 - = 0-C Epoch | Season
S .

r =] 0.0 0 1970
=20k © 4 52.3 | 728897 | 1975
sk E -105.2 | 1483689 | 1980
—so0 [ - - -41.7 | 2346429 | 1986

. ] 19.1 | 3090303 | 1991
100 |- C - .4 37.5 | 3395833 | 1993

10° Epoecﬁloe 3> 10°

Figure A.21.—: O-C Diagram for Period = 213.13253146 s for E+42

From figures A.17 to A.21, E=3090302 is evidently the right number of epochs for 1991

A.1.5 Bootstrapping from 1991 to 1993

From the O-C diagram shown in fig. A.19, we obtain the following corrections to Period for
the five possibilities E, E+1 and E+2.

100 [~ . = O-C | Epoch Season
N . ] (s)

50 - . - 0.0 0 1970
T 1 -37.6 | 728897 1975
Tole = -74.8 | 1483688 1980
S L 1 92,9 | 2346427 1986
o b . 1 65.04 | 3090301 1991

- 1 45.6 | 3395831 1993
- ) ] 5.7 | 4270769 | Sep-Oct99
100 *(\)‘ N R L. - 1.9 | 4295808 | Nov 99

10°

2x10° 3x10° 4x10°
Epoch

Figure A.22.—: O-C Diagram for Period = 213.13265485 s for E-2
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100 [ ] 0-C Epoch Season
F ] (5)

50 [~ — 0.0 0 1970
— ] -19.6 | 728897 1975
Tole O -38.25 | 1483688 1980
& L . ] -61.8 | 2346428 1986
o - - B -71.9 | 3090302 1991

B . R 7 -83.8 | 3395832 1993
u . ] -101.9 | 4270770 | Sep-Oct99
OO e ] 2105.2 | 4295809 | Nov 99
0o 10° ZEXSngh 3x10° 4x10°
Figure A.23.—: O-C Diagram for Period = 213.13263016 s for E-1
100 [~ - O-C | Epoch Season
- S

50 - — 0.0 0 1970
— ] -1.64 | 728897 1975
Tole . . . .. | -1.7 | 1483688 1980
& L ] -3.5 | 2346428 1986
o - B 4.1 | 3090302 1991

: 7 -0.2 | 3395832 1993
u ] 3.3 | 4270770 | Sep-Oct99
oo L 0.6 | 4295809 | Nov 99
0o 10° ZEXSngh 3x10° 4x10°
Figure A.24.—: O-C Diagram for Period = 213.13260548 s for E
100 - e 0-C Epoch Season
B - ° ] (s)

50 - y . 0.0 0 1970
— L . i 1 163 | 728897 1975
o L. i 34.8 | 1483688 1980
& L ] 54.9 | 2346428 1986
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B ] 83.5 | 3395832 1993
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Figure A.25.—: O-C Diagram for Period = 213.13258079 s for E+41
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Figure A.26.—: O-C Diagram for Period = 213.13255611 s for E+42

From figures A.22 to A.26, we can see that FE=3395832 is the correct number of cycles for
1993

A.1.6 Bootstrapping from 1993 to 1999

From the O-C diagram in fig. A.24, we compute the following corrections to period for
varying the epochs of both the 1999 data sets simultaneously for the 5 possibilities E, E£1
and E+2.

Epoch Correction in Period | New Period
(1076 s) (s)

E-2=4270768 27.9636 213.13263347

E-1=4270769 14.1414 213.13261960

E=4270770 0.31924 213.13260573

E+1=4270771 -13.503 213.13259186

E+2=4270772 -27.3252 213.13257799

Table A.6: Corrections in Period for varying cycle counts between 1993 & 1999

Epoch Correction in Period | New Period
(1076 s) (s)

E-2=4414273 21.9323 213.13262766

E-1=4414274 10.9284 213.13261666

E=4414275 -0.07547 213.13260565

E+1=4414276 -11.0794 213.13259465

E+2=4414277 -22.0833 213.13258365

Table A.7: Corrections in Period for varying cycle counts between 1999 & 2000

82



100 e O-C | Epoch Season

: "
so L 100 0 1970

r ] -22.0 | 728897 1975
Ol ] -43.2 | 1483688 1980
<O B -69.6 | 2346428 1986
<L ° i -82.1 | 3090302 1991
_50 - . ] -95.0 | 3395832 1993

L . N 97.0 | 4270769 | Sep-Oct99
oo i c . j 93.7 | 4295808 Nov 99

e N N R S 89.1 | 4414274 | 2000

0 10° 2x10° 3x10%° 4x10°

Epoch
Figure A.27.—: O-C Diagram for Period = 213.13263347 s for E-2
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Figure A.28.—: O-C Diagram for Period = 213.13261960 s for E-1

100 - - O-C | Epoch Season

B ] (s)
so L 1 00 0 1970

r ] -1.8 728897 1975
Ol ] -2.1 | 1483688 1980
S . . . ° e =7 41 | 2346428 1986
<L i 3.4 3090302 1991
o L 1 -0.95 | 3395832 1993

C N 2.2 | 4270770 | Sep-Oct99
oo i j -0.4 | 4295809 Nov 99

. T S -1.6 | 4414275 2000

@)

10° 2x10 3x10° 4x10°

6
Epoch

Figure A.29.—: O-C Diagram for Period = 213.13260573 s for E
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Figure A.30.—: O-C Diagram for Period = 213.13259186 s for E+41
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Figure A.31.—: O-C Diagram for Period = 213.13257799 s for E+42

From figures A.27 to A.31, we conclude that E=4270770 and E=4295809 are the right
number of epochs for Sep-Oct 1999 and November 1999 respectively.

A.1.7 Bootstrapping from 1999 to 2000

From fig. A.29, we vary the epoch for the 2000 data set and calculate the following correc-
tions to the period.
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Figure A.32.—: O-C Diagram for Period = 213.13262766 s for E-2
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Figure A.33.—: O-C Diagram for Period = 213.13261666 s for E-1

85



100 |~ - 0O-C | Epoch Season
N 1 ()
50 A 0.0 0 1970
B ] -1.7 | 728897 1975
o L ] -2.0 | 1483688 1980
S . . . ° . e 4.0 | 2346428 1986
< r ] -3.5 | 3090302 1991
_ 50 - ] -1.0 | 3395832 1993
B ] 2.4 | 4270770 | Sep-Oct99
r 1 -0.3 | 4295809 | Nov 99
oD e T 15 | 4414275 2000
0 10° 2x10°  3x<10° 4x10°
Epoch
Figure A.34.—: O-C Diagram for Period = 213.13260565 s for E
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© O [ T 221 | 2346428 | 1986
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_s0 - 36.5 | 3395832 1993
C ] 49.2 | 4270770 | Sep-Oct99
L N 46.8 | 4295809 Nov 99
YOO L s s s s T 47,0 | 4414275 2000
o 10° 2x10° 3x10%° 4x10°
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Figure A.35.—: O-C Diagram for Period = 213.13259465 s for E+1
100 [ " «e’ O-C| Epoch Season
N . o 1 ()
so I . 1 700 0 1970
L - ] 14.2 | 728897 1975
= L . ] 30.6 | 1483688 1980
<O B 48.0 | 2346428 1986
<L i 71.4 | 3090302 1991
_50 - ] 73.7 | 3395832 1993
L 4 96.3 | 4270770 | Sep-Oct99
- ] 94.2 | 4295809 Nov 99
1007(\)‘ b LTl 95,8 | 4414275 | 2000

10° 2x10° 3x10° 4x10°
Epoch

Figure A.36.—: O-C Diagram for Period = 213.13258365 s for E+2
From figures A.32 to A.36, we can evidently see that £E=4414275 for the 2000 data set.
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A.1.8 Changing the Tzero from 1968 to 1986

The error in the calculated value of phase C for a point on the O-C diagram is a product
of the error in period and number of epochs from Tzero. To reduce this error in C, we
should choose a suitable Tzero that lies in between the observations from 1970 to 2000.
This suggests that the 1986 data set will prove to be a suitable reference point. Below, in
fig. A.37, we present our final and best O-C diagram for the period 213.13260565 s.

or i O-C | Epoch Season
i 1)
20 — — 3.9 | -2346428 1970
i ] 2.2 | -1617531 1975
>z r. . . c . . 1.9 | -862740 1980
eOor : 700 0 1986
< b 4 74 | 743874 1991
o0 N 3.1 | 1049404 1993
- g 6.4 | 1924342 | Sep-Oct99
i ] 3.7 | 1949381 Nov 99
N Y S S L S 2.5 | 2067847 2000
—2x106—1x106Ep02h 10° 2x10°

Figure A.37.—: O-C Diagram for Period = 213.13260565 s for Tzero 1986

87



Appendix B

B.1 Bootstrapping values for the Period 212.76842949

S

In this section, we will indicate the O-C diagrams that led to establishing the period and P
for the 212.768 s mode.

B.1.1 Bootstrapping from 1970 to 1975
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0

10° < o=
== ool

S><10°

O-C | Epoch | Season
(s)
0.0 0 1970
46.1 | 730144 | 1975

Figure B.1.—:

O-C Diagram for Period = 212.768371 s for data sets 1970 & 1975

From the O-C diagram in fig. B.1, we obtain the following corrections to Period for the five

possibilities E, E£+1 and E+£2.

Epoch Correction in Period | New Period
(107° s) (s)

E-2=730142 64.6004 212.769017

E-1=730143 035.4596 212.768726

E=730144 6.319 212.768434

E+1=730145 -22.8216 212.768143

E+2=730146 -51.9621 212.767851

Table B.1: Corrections in Period for varying cycle counts between 1970 & 1975

The smallest correction in period has been obtained for E = 730144 and is already suggestive
of the right answer. To help us pick out the right answer, we have also plotted a point
corresponding to the 1980 data set, though it has not been utilized in the calculations.

Epoch

= E O-C | Epoch | Season
3 E.)

= - = 700 0 1970
e E -1.6 | 730142 1975
= - _ -~ -20.6 | 1486223 | 1980

Figure B.2.— O-C Diagram for Period = 212.769017 s for E-2

—= O-C | Epoch | Season

ERNG

E 0.0 0 1970
— -1.2 | 730143 | 1975

= -12.7 | 1486225 | 1980

0

S5>=<10% 10
Eroch

i o=

Figure B.3.— O-C Diagram for Period = 212.768726 s for E-1
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=o = = 0O-C | Epoch | Season
2°F EL)
z°E- - = 00 0 1970
-1 = 0.1 | 730144 | 1975
—=c - ‘ = -3.3 | 1486227 | 1980

0

Eroch

Figure B.4.—: O-C Diagram for Period = 212.768434 s for E

10

i o=

=o £ - O-C | Epoch | Season
e E = )
ERl - = 00 0 1970
—o £ = 1.1 | 730145 | 1975
== E, . 4.8 | 1486229 | 1980

Epoch

Figure B.5.—: O-C Diagram for Period = 212.768143 s for E+1

10°

1. o=

=o =  0O-C| Epoch | Season
e =)
Te - ) 4 00 0 1970
R E 3.0 | 730146 | 1975
—=° ‘ ‘ = 142 ] 1486231 | 1980

0

Eroch

10

i o=

Figure B.6.—: O-C Diagram for Period = 212.767851 s for E+2

B.1.2 Bootstrapping from 1975 to 1980
Having concluded that E=730144 is the right number of cycles between 1970 and 1975, we

now proceed to nailing down the number of epochs for the 1980 data set.

Table B.2: Corrections in Period for varying cycle counts between 1975 & 1980

Epoch Correction in Period | New Period
(1075 ) (s)

E-2=1486225 22.8896 212.768663

E-1=1486226 011.357 212.768548

E=1486227 -0.1757 212.768432

E+1=1486228 -11.7083 212.768317

E+2=1486229 -23.2409 212.768202
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= - =] O-C | Epoch | Season
- - =4
c 2 00 0 1970
B E 44.9 | 730143 1975
= E 80.3 | 1486225 1980
= ‘ ‘ ‘ ‘ o 85.1 | 2350441 | 1986
o 5>=<10° l]glzocjhaxloe =><10°
Figure B.7.— O-C Diagram for Period = 212.768663 s for E-2
= E O-C | Epoch | Season
= - = (s)
F. = 0.0 0 1970
B E -83.5 | 730144 1975
= e 38.7 | 1486226 1980
e T ‘ ‘ 4 -68.1 | 2350443 | 1986
o 5>=10° 1]%;001},16><106 2>=<10°
Figure B.8.—: O-C Diagram for Period = 212.768548 s for E-1
= = O-C | Epoch | Season
= -
F. - - = 0.0 0 1970
- 1 16 | 730144 | 1975
= E -1.3 | 1486227 1980
= ‘ ‘ ‘ ‘ - 6.3 | 2350444 | 1986
o 5>=<10° l]glzocjhaxloe =><10°
Figure B.9.—: O-C Diagram for Period = 212.768432 s for E
= - E O-C | Epoch | Season
- e )
= = 0.0 0 1970
B E 86.1 | 730144 1975
2 ) = -42.8 | 1486228 | 1980
= ‘ ‘ ‘ ‘ 1 53.2 | 2350445 | 1986

5>=<10° 1]9;001},15><105 =2>=10°

Figure B.10.—: O-C Diagram for Period = 212.768489 s for E+1
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0-C Epoch | Season
(s)
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-84.2 | 1486229 | 1980
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I I I I
s = e e
5>=<10 192 o L,5>=<10° 2=<10

L0
‘HH‘HHlHH‘HH‘

h
0
0
1

0

Figure B.11.—: O-C Diagram for Period = 212.768202 s for E+2

We conclude that E=1486227 is the right number of cycles for the 1980 data set.
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B.1.3 Bootstrapping from 1980 to 1986

From the O-C values plotted in fig. B.9, we compute the following corrections to the period.

Table B.3: Corrections in Period for varying cycle counts between 1980 & 1986

50

0-C (5)

— 50

Epoch Correction in Period | New Period
(1072 s) (s)

E-2=2350442 119112 212.768551

E-1=2350443 5.86154 212.768491

E=2350444 -0.18814 212.768430

E+1=2350445 -6.2378 212.768370

E+2=2350446 -12.2875 212.768309

Figure B.12.—: O-C Diagram for Period = 212.768551 s for E-2

F E 0-C Epoch | Season
= = (s)

- - ] 0.0 0 1970
E = -85.7 | 730144 1975
= e 34.3 | 1486226 | 1980
F - 3 -75.2 | 2350443 1986
15 T SN L —; 51.6 | 3095590 1991

o]

10° ppocET1O°

Figure B.13.—: O-C Diagram for Period = 212.768491 s for E-1

E 0O-C | Epoch | Season
- E (s)
= 0.0 0 1970
- 416 | 730144 | 1975
E -89.1 | 1486227 1980
] 66.7 | 2350443 1986
e i 24.2 | 3095591 1991

Epoch

Figure B.14.—: O-C Diagram for Period = 212.768430 s for E

= = O-C | Epoch | Season
F ERNO)

- 1700 0 1970
F- - - - e 3.1 730144 1975
= E 1.8 | 1486227 | 1980
B T -1.6 | 2350444 | 1986
lé L N 0.0 | 3095592 1991

93



0-C Epoch | Season
(s)
0.0 0 1970
47.1 | 730144 1975
91.1 | 1486227 | 1980
-72.2 | 2350445 | 1986
L . = -27.3 | 3095593 | 1991

10° Epoo§x1o‘3 3><10°

Figure B.15.—: O-C Diagram for Period = 212.768370 s for E+1

X

0
‘HH‘HH‘HH‘HH‘
]
‘HH‘HH‘HH‘HH‘

N
o]
o]

o]

O-C | Epoch | Season
(s)
0.0 0 1970
92.0 | 730144 1975
-30.8 | 1486228 | 1980
72.1 | 2350445 | 1986
L ‘ ‘ -51.6 | 3095594 | 1991

10° Epoo§x1o‘3 3><10°

—Mm#uu\uuhm\—

0
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]

N
o]
o]

o]

Figure B.16.—: O-C Diagram for Period = 212.768309 s for E+42
We can evidently see that the correct number of epochs for the 1986 data set is E=2350444.

B.1.4 Bootstrapping from 1986 to 1991

Using the O-C values indicated in fig. B.14, we have calculated the following corrections in
period for the 5 possibilities E, E£1 and E+£2.

Epoch Correction in Period | New Period
(10=% s) (s)

E-2=3095590 73.8743 212.76850387

E-1=3095591 036.9739 212.76846697

E=3095592 0.07352 212.76843007

E+1=3095593 -36.8269 212.76839317

E+2=3095594 -73.7272 212.76835627

Table B.4: Corrections in Period for varying cycle counts between 1986 & 1991

Epoch Correction in Period | New Period
(10=% s) (s)

E-2=3401642 48.7644 212.76847883

E-1=3401643 024.1638 212.76845423

E=3401644 -0.4369 212.76842963

E+1=3401645 -25.0376 212.76840503

E+2=3401646 -49.6382 212.76838043

Table B.5: Corrections in Period for varying cycle counts between 1991 & 1993
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Figure B.17.—: O-C Diagram for Period = 212.76850387 s for E-2

0-C Epoch | Season

(s)

0.0 0 1970
-51.1 730144 1975
104.5 | 1486226 | 1980
36.4 | 2350443 | 1986
-15.6 | 3095591 | 1991
-41.6 | 3401643 | 1993

x 4

0

10° =2x10° 3><10°
Epoch

Figure B.18.—: O-C Diagram for Period = 212.76846697 s for E-1

O-C | Epoch | Season

(s)

0.0 0 1970
-24.0 | 730144 1975
-53.4 | 1486227 | 1980
-89.0 | 2350444 | 1986
98.5 | 3095591 | 1991
83.8 | 3401643 | 1993

e ]

o

10° 2x10° 3>=<10°
Epoch

Figure B.19.—: O-C Diagram for Period = 212.76843007 s for E
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-0.3 | 3095592 | 1991
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O-C | Epoch | Season

50 E— - E (S)
R . 1 00 0 1970
=z, k. 4 302 | 730144 | 1975
S F . 56.6 | 1486227 | 1980
—s0 . 85.6 | 2350444 1986
L ] -99.0 | 3095593 1991
100 ;\ P S SRS N %; -91.0 3401645 1993
o 10° Epozc>1<11oa 3><10°
Figure B.20.—: O-C Diagram for Period = 212.76839317 s for E+1
100 :— 7: 0-C EpOCh Season
50 :— - j (S)
R =1 00 0 1970
=z, k. TS 572 | 730144 | 1975
2 1 -101.2 | 1486228 | 1980
—s0 - . -39.8 | 2350445 1986
L ] 15.0 | 3095593 | 1991
100 ;\ P R S SR S N ‘; 34.3 3401645 1993
o 10° Epozc>1<11oa 3><10°

Figure B.21.—: O-C Diagram for Period = 212.76835627 s for E+2

E=3095592 seems to be the right answer from all the 5 possibilities investigated.

B.1.5 Bootstrapping from 1991 to 1993
Utilizing the O-C table in fig. B.19, we evaluated the following corrections to the period.

100 & - — O-C | Epoch Season
r 1 _0)

s0 ° . 4 0.0 0 1970
o 1 -328 | 730144 1975
P = -T1.0 | 1486227 1980
s [ ] 95.6 | 2350443 1986
o ° E 61.9 | 3095591 1991
C . ] 43.5 | 3401643 1993

oo i‘ | L j 4.1 | 4278079 | Sep-Oct99
> To7  mpige, 5<10° axi0f 4.4 | 4303161 | Nov99

Figure B.22.—: O-C Diagram for Period = 212.76847883 s for E-2
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Joo CT T T T T T 0-C Epoch Season
L ] (s)

50 . 0.0 0 1970
_r 1 -14.7 | 730144 1975
I ] -34.4 | 1486227 1980
= - - . -58.9 | 2350444 1986
eo b - = -74.9 | 3095592 1991

r ° R ] -85.7 | 3401644 1993

oo E - B -103.3 | 278080 | Sep-Oct99

L L L [ R R B S
o 10° ZEX:plgj:h 3<10° 4x=<10° -102.5 303162 Nov99

Figure B.23.—: O-C Diagram for Period = 212.76845423 s for E-1
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L ] -2.1 | 3401644 1993
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Figure B.24.—: O-C Diagram for Period = 212.76842963 s for E
oo T T T T T T O-C Epoch Season
B - 1 (s)

50 |— < - 0.0 0 1970
R . 1 214 | 730144 1975
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L ] 81.4 | 3401644 1993
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L L L L 1 e
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Figure B.25.—: O-C Diagram for Period = 212.76840503 s for E+1
T e B e I B 0-C | Epoch Season
z : SO

50 |— - 0.0 0 1970
_F ) 1 39.5 | 730144 1975
= k. w1 755 | 1486227 | 1980
< - 1 -96.9 | 2350445 1986
Cso | . S -59.6 | 3095593 | 1991

L ° ] -47.7 | 3401645 1993
roo E. .4 06 | 4278081 | Sep-Oct99
5 To7  mpige, <107 axi0f 2.0 | 4303163 | Nov99

Figure B.26.—: O-C Diagram for Period = 212.76838043 s for E+2

We can conclude that E=3401644 is the correct number of cycles for the 1993 data set.

B.1.6 Bootstrapping from 1993 to 1999

From the O-C values indicated in fig. B.24, we calculate the following corrections to the
period.
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Epoch Correction in Period | New Period
(1076 s) (s)

E-2=4278078 27.9636 212.76845759

E-1=4278079 14.1414 212.76844377

E=4278080 0.31924 212.76842995

E+1=4278081 -13.503 212.76841613

E+2=4278082 -27.7325 212.76840230

Table B.6: Corrections in Period for varying cycle counts between 1993 & 1999

100 [ ~ O-C | Epoch Season
- = (s)
co [ B 0.0 0 1970
- 1 -17.2 | 730144 1975
= 1 -39.3 | 1486227 1980
S - -66.8 | 2350444 1986
< r ) 1 -85.2 | 3095592 1991
—50 [ ) I 97.1 | 3401644 1993
- . 4 95.1 | 4278079 | Sep-Oct99
oo, .., T. 4 9594303161 | Nov99
o 10% 210f Bx10f ax10f 78.2 | 4421829 2000

Figure B.27.—: O-C Diagram for Period = 212.76845759 s for E-2

100 0O-C | Epoch Season
(s)
0.0 0 1970

50

7.0 | 730144 1975
-18.7 | 1486227 | 1980
-34.2 | 2350444 | 1986
-42.6 | 3095592 | 1991
-50.3 | 3401644 | 1993
-58.8 | 4278080 | Sep-Oct99
L -57.7 | 4303162 | Nov99
L0° melgt sx10° axiof -73.7 | 4421830 | 2000

Epoc

—50

X

0-C (s)
“\\\\‘\\\\i\\\\‘\\\\‘

100

o}

Figure B.28.—: O-C Diagram for Period = 212.76844377 s for E-1
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o E 4 700 0 1970
r ] 3.1 730144 1975
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< L 4 0.1 | 3095592 1991
—50 [ - -3.3 | 3401644 1993
- ] 0.3 | 4278080 | Sep-Oct99
ool .. .4 LT | 4303162 | Nov9
o 10" 2piof 0100 4x10° -12.5 | 4421830 | 2000
Figure B.29.—: O-C Diagram for Period = 212.76842995 s for E
oo T T O-C | Epoch Season
- 1 _6
o E e | 00 0 1970
C . ° ] 13.3 | 730144 1975
= L . ° ] 22.4 | 1486227 1980
S . 31.3 | 2350444 1986
< L 4 42.9 | 3095592 1991
—50 [ - 43.6 | 3401644 1993
- 1 59.4 | 4278080 | Sep-Oct99
100 ] 61.2 | 4303162 Nov99
5 10 agigt anior axior 48.6 | 4421830 | 2000
Figure B.30.— O-C Diagram for Period = 212.76841613 s for E+1
100 [ T o 0-C Epoch Season
: SRR R
s0 < I 0.0 0 1970
r ° ] 23.3 730144 1975
= T : 1 430 | 1486227 | 1980
O - 64.0 | 2350444 1986
< L 4 85.5 | 3095592 1991
—50 [ = 90.6 | 3401644 1993
. : -94.2 | 4278081 | Sep-Oct99
100 & e -92.2 | 4303163 Nov99
P " P TR IR NN R I R S|
5 100 Egagtanior axior -102.9 | 4421831 | 2000

Figure B.31.—: O-C Diagram for Period = 212.76840230 s for E+2
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E=4278080 and E=4303162 are evidently the right number of epochs for the Sep-Oct 1999
and November 1999 data sets respectively.

B.1.7 Bootstrapping from 1999 to 2000

Utilizing the O-C values indicated in fig. B.29, we evaluate the following corrections to
period for the 5 possibilities E, Ex1 and E+2.

Table B.7: Corrections in Period for varying cycle counts between 1999 & 2000

100 - - 0-C Epoch Season
- ] (s)
50 n 0.0 0 1970
B ] -12.4 | 730144 1975
@ [ ] -29.0 | 1486227 1980
<O . . ] -51.9 | 2350444 1986
<L . ] -65.5 | 3095592 1991
_s0 | ) ° 1 -75.5 | 3401644 1993
L 4 -90.5 | 4278080 | Sep-Oct99
B N -89.6 | 4303162 Nov99
OO T T 106.2 | 4421829 2000
0 10° 2x10° 3x10° 4x10°
Epoch

Epoch Correction in Period | New Period
(1076 ) (s)

E-2=4421828 21.2815 212.76845123

E-1=4421829 10.3151 212.76844027

E=4421830 -0.6512 212.76842930

E+1=4421831 -11.6175 212.76841833

E+2=4421832 -22.5839 212.76840737

Figure B.32.—: O-C Diagram for Period = 212.76845123 s for E-2
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so L 100 0 1970
L ] -4.5 730144 1975
© ] -13.6 | 1486227 1980
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ST R J -31.7 | 3095592 1991
o L . 1 -38.2 | 3401644 1993
L .. N -43.6 | 4278080 | Sep-Oct99
L e -42.5 | 4303162 Nov99
OO T 58,0 | 4421830 2000
0 10° 2x10° 3x10° 4x10°
Epoch
Figure B.33.—: O-C Diagram for Period = 212.76844027 s for E-1
100 - : O-C | Epoch Season
B ] (s)
so L 1 00 0 1970
L ] 3.5 730144 1975
© . . ] 2.8 | 1486227 1980
<0 ° . ° . o] 0.1 | 2350444 1986
ST a 2.2 | 3095592 1991
o L 1 1.0 | 3401644 | 1993
i 4 3.3 | 4278080 | Sep-Oct99
C ] 4.7 | 4303162 Nov99
OO T 95 | 4421830 2000
0 10° 2x10° 3x10° 4x10°
Epoch
Figure B.34.—: O-C Diagram for Period = 212.76842930 s for E
100 - - O-C | Epoch Season
B ] (s)
so L . 00 0 1970
L . e - * ] 11.7 | 730144 1975
= I . 1 19.1 | 1486227 | 1980
© 0 T 26.0 | 2350444 | 1986
ST a 36.1 | 3095592 1991
o L 1 36.3 | 3401644 | 1993
L N 50.2 | 4278080 | Sep-Oct99
L 4 51.8 | 4303162 Nov99
OO T 3001 | 4421830 2000
0 10° 2x10° 3x10° 4x10°

6
Epoch

Figure B.35.—: O-C Diagram for Period = 212.76841833 s for E+1
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100 [ "« 0-C| Epoch Season
B . . " (s)
5o L . 1 700 0 1970
- 1 19.7 | 730144 1975
= T . 1 35.4 | 1486227 1980
< O T 52.0 | 2350444 1986
S T 1 70.0 | 3095592 1991
so 1 735 | 3401644 1993
C 1 97.0 | 4278080 | Sep-Oct99
C 1 989 | 4303162 | Nov99
OO e o T 87.6 | 4421830 2000

@)

10°

2x10°

Epoch

3x10°

4x10°

Figure B.36.—: O-C Diagram for Period = 212.76840737 s for E+42

We conclude that E=4421830 is evidently the correct number of cycles for the 2000 data

set.

B.1.8 Changing the Tzero from 1968 to 1986

As explained earlier in section A.1.8, changing the Tzero from 1968 to 1986 will reduce the
uncertainties in the calculated value of phase for the various points on the O-C diagram.
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Figure B.37.—: O-C Diagram for Period = 212.76842930 s for Tzero 1986
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Appendix C

C.1 Best O-C table for the 274 s Doublet

The 274 s doublet behaves differently than the 213 s doublet. For both modes of the 274 s
doublet, we could never achieve a clear minimization of phase dispersion. The uncertainties
in phase are larger for the 274 s doublet as it has a lower amplitude compared to the 213 s
doublet. However, both 212.768 s and 274.25 s periods have similar amplitudes. We cannot
blame the doublet’s amplitude for not being able to find correct cycle counts. Rather, the
0O-C diagrams are suggestive of behavior, apart from cooling. Suppose the effect governing
the 274 s doublet resulted in a constant P (at time-scales of 3 decades), then we would still
have been able to minimize the phase dispersion and all the O-C points would lie on the
best fit within uncertainties. In other words, uncertainty of this constant P would have been
comparable to the P uncertainty shown by the 213 s doublet. However, what we actually
obtain is an O-C diagram with ambiguous cycle counts and all the points do not lie on a
parabola within error bars. This can lead to a plausible thought that P for the 274 s doublet
is not constant and the P term is significant. If so, then we could be seeing something very

exciting, that needs further investigation.
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O-C | Error in O-C Epoch Season
(s) (s)
-55 18 -1823513 1970
-56 12 -1257055 1975
-5.4 7.3 -670474 1980
0.0 5.8 0 1986
-55.7 5.5 578099 1991
-72.0 8.6 815540 1993
-58 13 1495493 | Sep-Oct 1999
-65 14 1514952 Nov 1999

Table C.1: O-C table for Period 274.25080355 s

O-C | Error in O-C Epoch Season

(s) (s)

-35 41 -1820038 1970
17.5 28 -1254660 1975

22 16 -669196 1980

0.0 7.7 0 1986
-153 13 576996 1991
-126 20 813986 1993

-18 33 1492643 | Sep-Oct 1999
-60 33 1512065 Nov 1999

Table C.2: O-C table for Period 274.77450046 s

106



Bibliography

[Aizenman, Smeyers & Weigert (1977)] Aizenman, M., Smeyers, P. and Weigert, A. 1977,
A&A, 58, 41

[Bergeron et al.(1995)] Bergeron, P., Wesemael, F., Lamontagne, R., Fontaine, G., Saffer,
R. A. & Allard, N. F. 1995, ApJ, 449, 258

[Bradley (1998)] Bradley, P. A. 1998, ApJS, 116, 307
[Bradley (1996)] Bradley, P. A. 1996, ApJ, 468, 350
[Bradley (1993)] Bradley, P. A. 1993, Ph.D. Thesis, 4

[Bradley, Winget & Wood (1992)] Bradley, P. A., Winget, D. E. and Wood, M. A. 1992,
ApJ, 391, 133

[Brassard, Fontaine, Wesemael & Hansen (1992)] Brassard, P., Fontaine, G., Wesemael, F.
and Hansen, C. J. 1992, ApJS, 80, 369

[Christensen-Dalsgaard (1981)] Christensen-Dalsgaard, J. 1981, MNRAS, 194, 229
[Clemens (1993)] Clemens, J. C. 1993, Baltic Astronomy, 2, 511

[Costa, Kepler & Winget (1999)] Costa, J. E. S., Kepler, S. O. & Winget, D. E. 1999, ApJ,
522, 973

[Costa (1996)] Costa, J. E. S. 1996, M. S. thesis, Inst. Fis. Univ. Federal do Rio Grande do
Sul, Brazil

[Giovannini et al. (1998)] Giovannini, O., Kepler, S. O., Kanaan, A., Wood, A., Claver, C.
F. and Koester, D. 1998, Baltic Astronomy, 7, 131

107



[Kaspi, Taylor & Ryba(1994)] Kaspi, V. M., Taylor, J. H. & Ryba, M. F. 1994, ApJ, 428,
713

[Kawaler, Winget & Hansen(1985)] Kawaler, S. D., Winget, D. E. & Hansen, C. J. 1985,
ApJ, 298, 752

[Kepler, et al. (2000)] Kepler, S. O., Mukadam, A., Winget, D. E., Nather, R. E., Metcalfe,
T. S., Reed, M. D., Kawaler, S. D. and Bradley, P. A. 2000, ApJ, 534, L.185

[Kepler, et al. (1995)] Kepler, S. O., et al. 1995, Baltic Astronomy, 4, 238

[Kepler & Bradley (1995)] Kepler, S. O. & Bradley, P. A. 1995, Baltic Astronomy, 4, 166
[Kepler (1993)] Kepler, S. O. 1993, Baltic Astronomy, 2, 515

[Kepler, et al. (1991)] Kepler, S. O., and 28 colleagues 1991, ApJ, 378, L45

[Kleinman, Kawaler & Bischoff (2000)] Kleinman, S. J., Kawaler, S. D. and Bischoff, A.
2000, ASP Conf. Ser. 203: The Impact of Large-Scale Surveys on Pulsating Star Research,
515

[Kleinman, Nather & Phillips (1996)] Kleinman, S. J., Nather, R. E. & Phillips, T. 1996,
PASP, 108, 356

[Lacombe & Fontaine (1980)] Lacombe, P. & Fontaine, G. 1980, JRASC, 74, 147

[Leggett, Ruiz & Bergeron (1998)] Leggett, S. K., Ruiz, M. T. and Bergeron, P. 1998, ApJ,
497, 294

[Liebert, Dahn & Monet (1988)] Liebert, J., Dahn, C. C. and Monet, D. G. 1988, ApJ, 332,
891

[McGraw & Robinson (1976)] McGraw, J. T. & Robinson, E. L. 1976, ApJ, 205, L155
[Mestel (1952)] Mestel, L. 1952, MNRAS, 112, 583

[Montgomery & Winget(1999)] Montgomery, M. H. & Winget, D. E. 1999, AplJ, 526, 976
[Montgomery(1998)] Montgomery, M. H. 1998, Ph.D. Thesis, 21

[Nather (1995)] Nather, R. E. 1995, Baltic Astronomy, 4, 321

108



[Nather, et al. (1990)] Nather, R. E., Winget, D. E., Clemens, J. C., Hansen, C. J. & Hine,
B. P. 1990, ApJ, 361, 309

[Nitta et al. (1999)] Nitta, A., Kanaan, A., Kepler, S. O., Koester, D., Montgomery, M. H.
and Winget, D. E. 1999, Baltic Astronomy, 9, 97

[Oswalt, Smith, Wood & Hintzen (1996)] Oswalt, T. D., Smith, J. A., Wood, M. A. and
Hintzen, P. 1996, Nature, 382, 692

[Pajdosz (1995)] Pajdosz, G. 1995, A&A, 295, L17

[Rawley, Taylor, Davis & Allan(1987)] Rawley, L. A., Taylor, J. H., Davis, M. M. & Allan,
D. W. 1987, Science, 238, 761

[Robinson, Kepler & Nather (1982)] Robinson, E. L., Kepler, S. O. & Nather, R. E. 1982,
ApJ, 259, 219

[Standish (1998)] Standish, E. M. 1998, A&A, 336, 381

[Tomaney (1987)] Tomaney, A. B. 1987, IAU Collog. 95: Second Conference on Faint Blue
Stars, 673

[van Horn (1971)] van Horn, H. M. 1971, TAU Symp. 42: White Dwarfs, 42, 97
[Weidemann (1990)] Weidemann, V. 1990, ARA&A, 28, 103
[Winget (1998)] Winget, D. E. 1998, Journal of Physic s: Condensed Matter, 10, 11247

[Winget et al. (1997)] Winget, D. E., Kepler, S. O., Kanaan, A., Montgomery, M. H. and
Giovannini, O. 1997, ApJ, 487, L191

[Winget et al. (1987)] Winget, D. E., Hansen, C. J., Liebert, J., van Horn, H. M., Fontaine,
G., Nather, R. E., Kepler, S. O. and Lamb, D. Q. 1987, ApJ, 315, L77

[Winget, et al. (1985)] Winget, D. E., Robinson, E. L., Nather, R. E., Kepler, S. O. and
Odonoghue, D. 1985, ApJ, 292, 606

[Winget, Hansen & van Horn (1983)] Winget, D. E., Hansen, C. J. and van Horn, H. M.
1983, Nature, 303, 781

[Winget, van Horn & Hansen (1981)] Winget, D. E., van Horn, H. M. & Hansen, C. J. 1981,
ApJ, 245, 133

109



[Wood(1992)] Wood, M. A. 1992, ApJ, 386, 539

[Wood & Winget (1988)] ood, M. A. & Winget D. E. 1988, Multimode Stellar Pulsations,
eds. G. Kovacs, L. Szabados, and B. Szeidl (Konkoly Observatory. Kultura: Budapest),
p- 199

110



Vita

Anjum Mukadam was born on December 29, 1974 in Bombay, India. When she was 10 years
old, she decided to become an astronomer, to her family’s surprise and amusement. She just
loved looking at the stars and was very fascinated by them. She completed her school years
in St. Thomas High School and cleared the Senior Secondary Certificate Board Examination
(Grade X) in April, 1990. She then joined Bhavan’s Junior College to study science and
passed the Higher Secondary Certificate Board Examination (Grade XII) in April, 1992.
She then joined D. G. Ruparel College and got her Bachelor of Science in Physics in May,
1995. Anjum pursued physics in the Indian Institute of Technology (IIT), Bombay and was
awarded Master of Science in April, 1997. She then joined Tata Institute of Fundamental
Research (TIFR), Bombay as a research scholar for a year. She came to the United States

in July 1998 and joined the University of Texas at Austin as a graduate student.

Permanent Address: 2502 Leon Street, Apt # M
Austin, TX - 78705

This thesis was typeset with BTEX 2! by the author.

IATRX 2¢ is an extension of IWTEX. IETEX is a collection of macros for TeX. TgX is a trademark
of the American Mathematical Society. The macros used in formatting this thesis were written by
Dinesh Das, Department of Computer Sciences, The University of Texas at Austin.

111



