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PREFACE

Some of the results presented in Chapters 2-5 of this dissertation have 

appeared in publication form in the Astrophysical Journal  (Kawaler et al. 1985a,b; 

Kawaler et al. 1986).  To reduce unnecessary redundancy, no references have been 

made to these papers in the main text.

By nature, I usually end up working very late at night, alone.  Most of the 

effort that went into producing this dissertation was put in at the computer, or with a 

pen and pad on my sofa, when most every one else with any sense was sound asleep.  

This is not to say that the work that I present here is that of a solitary individual 

working in an utter vacuum.  Nothing could be further from the truth.

Until quite recently, my wife Leslie and I joked that I had never seen her 

asleep. That has changed.  I have had it easy for the past year and a half compared to 

her.  While I raked in the pennies of minimal graduate student support and played with 

my stellar models, she faced impossible filing deadlines, vague leadership from 

partners, and mountains of thrilling transcripts of utility rate hike hearings.  Despite the 

monetary rewards for such self-destructive behavior, little satisfaction came to her in 

knowing that after coming home from work, we could only have a brief meal together, 

after which she had to go to sleep and I had to go to work. Despite this unnatural 

routine to which we had to adhere for tha past year and a half, she is more than ever the 

perfect companion, colleague, friend, and lover.  How she managed it, I don't know; 

what I would have done without her, I can't imagine. 

While some doctoral students are fortunate enough to have a caring, 

stimulating, and patient supervising professor, I have had the extraordinary luck to have 

two of them: co-supervisors Don Winget and Carl Hansen.  Don has been a 

continuous fountain of ingenious ideas and contagious enthusiasm from the time we 

first sat down to discuss the possibility of this thesis program to the presentation of the 

results at the recent  AAS  meeting in Houston.  Carl has provided polished experience
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and made available his breadth of knowledge despite the geographical distance between 

Boulder and Austin.  His constant support and guidance inspired me to strive to meet 

his high standards.  I am deeply grateful to Don and Carl for their personal friendship, 

and for treating me from the very start as a peer and colleague (and as a lowly student 

and imbecile when necessary).  The completion of this dissertation is the beginning of 

a long collaboration with Don and Carl;  I am very proud to be a part of the same 

profession as these two outstanding scientists.

It is a pleasure to acknowledge the help and encouragement of many members 

of the astronomical community.  It is an honor to work with a scientist of such stature 

as Dr. Icko Iben, Jr..  Dr. Iben made it possible to explore many  topics of importance  

by providing copies of his stellar evolution code, and by discussing at length the details 

of planetary nebula nucleus and hot white dwarf evolution.  It has also been very 

valuable to have Ed Nather's sound astrophysical knowledge and keen intuition just two 

doors down the hall.  I would also like to acknowledge the following people who have 

given helpful advice and shared their expertise: Hugh Van Horn, Gilles Fontaine, Ed 

Robinson, Art Cox, Sumner Starrfield, Matt Wood, Allen Hill, Jim Liebert, Craig 

Wheeler, Dean Pesnell, and  Duane Dicus, as well as many others.

Dr. John Cox's influence on this work is evident on almost every page.  This is 

not surprising, considering his personal and scientific influence on Don and Carl, and 

his many important contributions to the fields of stellar evolution and pulsation.  In 

many ways, this dissertation is but a small tribute to his ingenuity, ability, and vision.
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The existence of several pulsating hot degenerates provides the exciting 

opportunity to study this transitory stage of stellar evolution with the techniques 

available from pulsation theory.  We evolve 0.40-0.95Mo stellar models from the 

planetary nebula nucleus (PNN) phase to the cooling white dwarf phase using a variety 

of techniques, and solve the equations of linear adiabatic nonradial oscillations for these 

models.  The g-mode periods are determined within the degenerate core at high 

luminosities.  Below 100Lo (in models of 0.60Mo), the region of period formation 

moves out into the nondegenerate envelope.  The high radial overtone (20-40) and low 

order l   (1-3) g-mode periods are comparable to those seen in the variable PG1159 

stars.  The period spacings agree as well, and appear to yield mode identifications.

Rates of period change can be used to probe the mass, structure, composition, 

and energy loss mechanisms of these degenerates.  Periods generally increase with 

time for nonrotating models that are on the white dwarf cooling track below 1000Lo.  

The rates of period change for PNNs are strongly dependent on the rate of energy loss 

via neutrinos.   The timescale for period change is about 106 years.  Evolutionary 
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changes in the rotation rate can be important also.  The rate of change of the 516s 

period of PG1159-035 is consistent with the theoretical results incorporating this 

effect, and suggests that rotation strongly affects the observed rate of period change.  

At the relatively cooler temperatures of the DBV stars, the models suggest that the rates 

of period change should be observable, and may provide important independent 

constraints on the effective temperatures of these stars. 

We also report preliminary results of fully nonadiabatic pulsation calculations 

for models of PNN.  In all models, an active nuclear burning shell leads to the 

instability of some g-modes through the ε-mechanism.  Only g-modes are unstable; in 

our models the unstable periods are confined to the range from 50s to 214s.  We 

suggest that if hydrogen-deficient PNNs contain helium burning shells, then they 

should show pulsations with these periods.
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CHAPTER 1

AN OVERVIEW OF STELLAR PULSATION IN POST-RED GIANT PHASES

1.1  Introduction

Most temporal astrophysical phenomena occur over timescales that are much 

longer than anything occurring within the usual circle of human experience.  This is, by 

and large, a fortunate circumstance.  For example, the fact that the sun's luminosity and 

temperature have remained essentially constant over the past five billion years has 

allowed life to develop and flourish on Earth.  Yet, in everyday life, it is temporal 

change that relieves an otherwise tedious routine.  Likewise, if all  astrophysical 

phenomena remained constant over several human lifetimes, astronomy would be far 

less exciting than it has turned out to be.

Striking examples of temporal changes in astrophysics are the pulsating 

variable stars.  These stars have captured the attention of amateurs and professionals 

alike for centuries.  The first pulsating star to be identified was Mira (Omicron Ceti). 

Mira has been observed regularly since Fabricus discovered its variability in 1596 

(Ledoux and Walraven 1958).  This star varies in brightness by a factor of 250, falling 

from moderate naked-eye brightness to invisibility and brightening again, over a period 

of about 310 days.  Mira is an intrinsically bright red giant star, with a radius of about 

300 Ro, but with a mass only about twice that of the sun, which pulsates in the radial 

fundamental (or first overtone) mode (Tuchman, Sack, and Barkat 1979, Willson 

1979).

In modern times, pulsations with amplitudes of thousandths of a magnitude 

and periods of minutes have been accurately monitored with the sophisticated 

techniques of high-speed photometry, developed largely by R.E. Nather at the 

University of Texas (Nather 1972).  In 1968, the first member of a second important 
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class of pulsating variable star was discovered using this technique when A. Landolt 

observed the first pulsating white dwarf, HL Tau 76 (Landolt 1968).  A second similar 

variable, ZZ Ceti (R548), was discovered by Lasker and Hesser (1971), and lent it name 

to the new class of variable stars.  Subsequent discoveries of additional ZZ Ceti stars 

indicate that they are the most numerous type of pulsating star in the Universe 

(McGraw 1977).  In contrast to red giant stars such as Mira, white dwarfs are one of 

the most compact types of stars (R~10-2Ro, mean density ~2x105 g/cm3).  Also 

unlike the Mira variables, the ZZ Ceti stars  are undergoing nonradial gravity-mode 

pulsation.  As the name implies, this form of pulsation involves radial and horizontal 

mass motions with gravity as the restoring force.  The periods associated with these 

pulsation modes are longer than the periods characteristic of radial pulsation;  in the ZZ 

Ceti stars, the observed periods are between 100 and 1000 seconds, whereas the radial 

pulsation periods for cool white dwarfs are less than 10 seconds.

The observed variations of pulsating stars reflect periodic changes in the 

instantaneous structure of the star.  Since most stars evolve on timescales of millions of 

years the pulsation properties, like other time-averaged properties of a star, are 

essentially constant over millions of pulsation cycles.  Hence, though the study of 

pulsating variables involves temporal changes, variable stars do not usually show the 

effects of secular evolutionary changes in the structure of the star.  Within this context, 

one could say that the periodic pulsation of the star is part of the "tedious routine."

Recently, however, a new class of pulsating variable stars has been identified 

that promises to provide direct observational evidence for stellar evolution.  Several 

extremely hot DO degenerate dwarf stars have been reported to be multiperiodic 

pulsating variable stars.  The first of these was PG1159-035, initially reported by 

McGraw et al.(1979).  Other stars with similar spectra have been found to pulsate with 

similar periods:  PG1707+427 and PG2131+066 have periods around 500 seconds 

(Bond et al. 1984).  A related discovery by Grauer and Bond (1984) is that the central 

star of the planetary nebula K1-16 is a single variable star with periods of the order of 

1700s.  Spectroscopic evidence indicates that the central star of K1–16 (hereafter 

K1–16) has an effective temperature well in excess of 100,000K, making it one of the 

hottest stars known (Kaler and Feibelman 1985).
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Since the pulsating PG1159 stars and K1-16 are hot degenerates, the observed 

pulsation periods are much longer than the expected radial pulsation periods (on the 

order of the dynamical timescale in hot white dwarfs, ~20-50 seconds).  This, along 

with the multiperiodic nature of their light curves, strongly suggests that, like the ZZ 

Ceti stars, they are undergoing nonradial g-mode pulsation.  The initial theoretical 

investigations of stellar pulsation in this area, conducted by Starrfield and collaborators 

(Starrfield et al. 1983, 1984), support this interpretation of the luminosity variations.  

We will discuss the properties of nonradial oscillations in detail in Chapter 3. 

The conclusion that hot degenerates are undergoing nonradial g-mode 

pulsations provides a direct connection with the two other classes of variable 

degenerates.  We refer to these three classes of variable star using the classification 

scheme of Sion et al. (1983): the DAVs, or ZZ Ceti stars; the DBVs, or pulsating DB 

white dwarfs; and the DOVs, or pulsating PG1159-035 stars.  The coolest of the 

variable white dwarfs, the hydrogen-rich DAVs, are found in a narrow, well defined 

instability strip at an effective temperature near 12,000K.  The hydrogen deficient 

DBVs lie in a region near log(L/Lo)=-1.3 and Te=25,000K.  The relative location of 

the DOVs and DBVs in the H-R diagram, as well as their helium rich surface 

composition, are increasingly suggestive of a direct evolutionary connection between 

the two classes of objects (Sion et al. 1985).  However, the current limits on the He/H 

ratio in the DOVs cannot rule out the possibility that the DOVs could be DA 

progenitors as well.

To discuss the evolutionary status of the hot degenerates, we begin with the 

"birth pang" of the luminous hot degenerate: the transition from an asymptotic giant 

branch (AGB) star to a PNN. In Figure 1.1, we indicate the general regions of the 

theoretical Hertzsprung-Russel diagram in which the pulsating degenerates are located.  

Also shown in Figure 1.1 is a representative evolutionary track for a 3.0Mo model 

from the zero-age main sequence to the AGB, and the evolutionary track for a 0.60Mo 

model from the PNN stage to the final white dwarf cooling phase.  Following the 

exhaustion of helium in the core, intermediate mass stars (~2-8Mo) move onto the 

AGB as they burn hydrogen and helium in thin shells surrounding a degenerate 

carbon/oxygen core. A very extended envelope containing roughly 80% of the mass of
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Figure 1.1:

The regions of the H-R diagram occupied by the pulsating degenerates.   Also 

shown is the zero age main sequence (ZAMS), with the representative positions of 

different mass main sequence stars indicated with solid dots.  The thin line shows 

the evolutionary track for a 3.0Mo model from the main sequence to the asymptotic 

giant branch (AGB).  The rapid phase of evolution of the 0.60Mo core that remains 

of the 3.0Mo AGB model following ejection of a planetary nebula is indicated by 

the dashed horizontal line; the model then rounds the knee and evolves as a white 

dwarf along the thick solid track.  The error box indicates the probable position of 

PG1159-035 in the H-R diagram.
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the star surrounds the core (the proto-white dwarf) out to a radius of several 

astronomical units.  

As hydrogen and helium are processed through the respective burning shells, 

the mass of the core increases and the star becomes more luminous.  Two significant 

processes occur as the star evolves up the AGB.  First, the mass loss rate increases as 

the star becomes more luminous, approaching rates of 10-5Mo/yr (Knapp et al. 1982). 

Second, the rate of processing of material through the hydrogen-burning shell occurs at 

a much faster rate than through the helium burning shell, rendering the double-shell 

burning configuration thermally unstable.  This instability, well studied theoretically 

(Iben and Renzini 1983 and references therein), leads to helium shell flashes on the 

AGB when the mass of helium deposited on the shell exceeds some critical value.  

By some as yet unidentified mechanism, the steady mass loss plus possible 

dynamic effects during shell flashes combine to remove much of the extended envelope 

of the star over 104 to 105 years.  When the mass above the hydrogen shell drops 

below about 0.01Mo, the effective temperature of the star increases rapidly with further 

mass loss, and the star, reduced to only about 20% of its initial mass, departs from the 

AGB and evolves quickly across the H-R diagram.   The star moves to the blue side at 

almost constant luminosity (at roughly the luminosity as at the time of departure from 

the AGB) because the time for evolution across the H-R diagram is very short.  The 

material in the recently ejected envelope, along with additonal material from the stellar 

wind, becomes ionized by the increasingly hot star, and the planetary nebula becomes 

visible.  In many cases, the mass loss continues until helium-rich material below the 

extinguished hydrogen shell is uncovered, as evidenced by the existence of helium-rich 

planetary nebulae such as Abell 78 and Abell 30 (Jacoby and Ford 1983).

The lifetime of the PNN phase may be inferred from theoretical evolutionary 

calculations described below.  Typically a 0.60Mo model will cover the horizontal 

portion of the evolutionary track in only about 10,000 years.  The star rounds the 

"knee" and settles down on the PWD cooling track in Figure 1.1 as the luminosity 

from the shell burning source goes away.  An independent estimate of the PNN 
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evolution rate can be obtained from the expansion rate of the nebula itself.  Typically, 

the nebular expansion velocity implies that the surface brightness of the nebula will 

drop below detectability over roughly 25,000 years.  Visibility of the central stars 

throughout the observed range in size of the nebulae suggests that the stars must 

remain bright over at least a similar length of time.

McGraw et al. (1979) pointed out that if PG1159-035 is a pre-white dwarf star 

that was once a PNN, then its rapid evolutionary changes in structure might be 

indirectly observable through observations of secular period changes.  This suggestion 

was elaborated upon by Winget, Hansen, and Van Horn (1983, hereafter WHVH), who 

estimated that pulsating PG1159 stars should exhibit period changes with e-folding 

times (τ) of ~106yr.  With such relatively short timescales (by stellar standards) they 

proposed that τ could be measured over just a few observing seasons.  In addition, their 

preliminary calculations, using crude subdwarf models, indicated that the rate of change 

of period (d∏/dt) for PG1159-035 should be negative; that is, its period should be 

decreasing with time.  The recent determination of d∏/dt=-1.2x10-11s/s for the 516s 

period of PG1159 (Winget et al. 1985) confirms those preliminary expectations.

The pulsating hot degenerates have already given us the first clear opportunity 

to study stellar evolution as a spectator sport.  These stars, in effect, are changing 

before our eyes.  Since they populate a region of the H-R diagram that at present has 

only been explored in a cursory manner, they present the unique opportunity to greatly 

refine the preliminary theoretical models of this rapid phase of stellar evolution.  For 

example, the locations of the DBV and DOV stars in the H-R diagram are not precisely 

known, and thus do not place very tight constraints on the theoretical models (Winget 

et al. 1983).  The introduction of an additional observational constraint, through the 

determination of rates of period change, will help relieve this situation.  One of the 

goals of this work is to investigate this constraint in the context of the DOV and DBV 

stars, and their possible evolutionary connection.  

 We begin by reviewing the current state of the observational study of the 

pulsating degenerates in the next section.  In Section 1.3, we review the relevant 
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previous theoretical explorations of stellar evolution and stellar pulsation.  We conclude 

this chapter with an outline the particular issues to be addressed in this dissertation in 

Section 1.4.

1.2   Observations of Pulsating Degenerates

1.2.1  Planetary Nebula Nuclei

Central stars of planetary nebulae (PNNs) are currently the hottest "normal" 

stars known.  In general, they lie in a region of the H-R diagram at temperatures from 

60,000K to well above 100,000K, with luminosities ranging from 10Lo to 3000Lo.  

Temperature determinations for these stars depend on the proper removal of nebular 

continuum and line emission from the stellar spectra.  Often the central star temperature 

is estimated by use of the Zanstra method, which equates the amount of energy 

necessary to excite the observed nebular emission with the total energy output of the 

central star.  Such temperature estimates are often considered only as lower limits to the 

stellar temperature (Kaler 1985), especially for high excitation nebulae.  

The effective temperature and luminosity of K1-16 are very uncertain.  The 

HeII Zanstra temperature for K1-16 as reported by Kaler (1983) is >90,000K with a 

luminosity ≥ 2500Lo.  Further work by Kaler and Feibelman (1985) indicates a UV 

color temperature >100,000K, and perhaps as high as 400,000K.  The optical CIV 

absorption lines are perhaps somewhat narrower than those of the PG1159 stars (see 

below), suggesting a lower surface gravity for K1-16 (Sion et al. 1985). 

Grauer and Bond (1984) reported that K1-16 is a photometric variable.  The 

dominant peak in the power spectrum of the light curve is at a period of 1698s.  The 

maximum amplitude of the light curve is about 0.01 magnitudes in white light.  As 

Grauer and Bond indicate, if the 1698s peak is stable in amplitude and phase, it should 

be possible to measure its rate of period change in a relatively short time.  

Unfortunately, the 1698s period is apparently not very stable over the current 

observational time base (Grauer 1985, private communication).  With a longer time 

baseline, a determination of d∏/dt may be possible if the 1698s peak can be  resolved.
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1.2.2  Pulsating PG1159-035 Stars

The term "PG1159" stars as used in the literature actually describe a 

spectroscopic  class of hot DO white dwarfs.  Presently there are seven members of 

this class: PG0122+200, PG1151-029, PG1159-035, PG1424+535, PG1520+525, 

PG1707+427, and PG2131+066 (Wesemael et al. 1985).  Spectroscopically, these 

stars show HeII lines in absorption (with possible narrow emission cores), and 

absorption lines of CIV and OVI (Wesemael et al. 1985, Sion et al. 1985).  The 

uncertain width of the absorption lines, coupled with the probable existence of central 

emission components to the lines, makes identifications of the lines, and any analysis 

of the line profiles somewhat uncertain, rendering determination of the surface gravity 

of these objects very difficult.  The best available model atmosphere analysis suggests a 

surface gravity of log(g) ≥ 7 (Wesemael et al. 1982, 1985).  It is the apparent lack of 

surface hydrogen, coupled with high surface gravities, that implies an advanced 

evolutionary state for these stars.  

The surface temperatures of the PG1159 stars are even more difficult to pin 

down than the surface gravities.  Considerable evidence that they are extremely high, 

however, does exist.  Temperature estimates for the prototype, PG1159-035, range 

from 80,000K to ~150,000K (Wegner et al. 1982). The energy distribution of 

PG1159-035   as measured with I.U.E. indicates an effective temperature of 

~100,000K (Wesemael et al. 1985).  Observations of the continuum in the 

912—1150Å band with the ultraviolet spectrometer aboard Voyager 2 lead Barry et al. 

(1985) to estimate a temperature of 150(+40,–20)x103K for this star.  A detection of 

PG1159-035 with the Einstein observatory also implies a very high surface temperature 

(McGraw et al. 1979).  Barstow and Holberg (1985, private communication) observed 

PG1159—035 with EXOSAT, deriving a lower limit of  Te=100,000K from the 

observed soft X-ray flux, and an upper limit of 125,000K from the amount of 

interstellar absorption. With these limits on the effective temperature and surface 

gravity of PG1159—035,   and assuming these results are representative of the other 

stars in the  class,  the approximate location of the PG1159 stars in the H—R  diagram 

is between the planetary nebula regime and the white dwarfs.
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They are most likely rapidly evolving and cooling down into the white dwarf region of 

the H-R diagram.

Of the seven PG1159 stars, three have been found to be variables:  PG1159-

035, PG1707+427, and PG2131+066 (McGraw et al. 1979,  Bond et al. 1984). The 

periods of pulsation in PG1707 are about 450s and 333s, while PG2131 shows a few 

peaks at around 400s in its power spectrum.  The semiamplitude of variation for these 

stars in the B band is about 0.017 magnitudes (Bond et al. 1984).  This amplitude is 

typical for all pulsating degenerates.

The most comprehensively observed of these DOV stars is PG1159-035.  The 

light-curve of PG1159-035 shows the well-known effects of beating between modes of 

similar period.  Winget et al. (1985) performed a very detailed analysis of the power 

spectrum of PG1159, and showed that at least 8 periods are simultaneously present in 

the light curve.  Of these, periods of 516.0s, 538.9s, 451.5s, and 495.0s are the 

strongest; other lower amplitude peaks are at 831.7s, 645.2s, 424.4s, and 390.0s. Only 

the 516.0s period was found to be stable both in phase and amplitude over the entire 

baseline of observations.  The maximum amplitude of the variation is about 0.01 

magnitudes, in white light.  Using EXOSAT, Barstow and Holberg (1985, private 

communication) found periodic modulations of the flux in the soft X-ray band (44-

150Å). The most significant period (at the 3 σ level) in their data was around 516s, with 

a semiamplitude of 0.15 magnitudes.

A very important result of the work by Winget et al. (1985) is their 

determination of the rate of period change for the 516s period of PG1159-035.  They 

found the period to be decreasing at the rate of d∏/dt = -(1.21±0.12)x10-11s/s.  As 

discussed in WHVH, a decreasing period implies that the effects of residual 

contraction are important to the observed oscillation spectrum (see Chapter 5).

1.2.3 The DBV Stars

Winget and collaborators began the search for the DBV stars to follow up on 

the suggestion, based on theoretical arguments (Winget 1981, Winget et al. 1983), that 
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certain DB white dwarfs should be nonradial g-mode pulsators.  This search resulted in 

the discovery of the first DBV, GD358, in 1982 (Winget, Robinson, Nather and 

Fontaine 1982).  The power spectrum of GD358 is very complex, with about 28 

periods simultaneously present in the light curve.  The grouping of periods in the 

power spectrum suggests possible rotational splitting (see Chapter 3) of several l =2 

modes into their five m components.  

Three other DBV stars have been found so far: PG1654+160 (Winget, 

Robinson, Nather, and Balachandran 1984), PG1351+489 and PG1115+158 (Winget, 

Nather and Hill 1986). The light curve of PG1351+489 is consistent with only two 

periods, dominated by a single, large amplitude (0.07 mag) peak at 489s.  The non-

sinusoidal pulse shape results in several harmonics of the 489s period in the power 

spectrum (Hill 1985, private communication).  The amplitude of white-light variations 

for PG1351 is about 0.02 magnitudes.  PG1115+158 has periods of about 1100s, with 

an amplitude of about 0.01 magnitudes, but the pulsations may be unstable (Winget, 

Nather and Hill 1986).  

An initial estimate of the effective temperature of GD358 was made by 

Koester, Weidemann and Vauclair (1983) using the low resolution spectrophotometer 

of the IUE satellite; they obtained Te=26±2x103K.  Another estimate for the effective 

temperature was made by Oke, Weidemann, and Koester (1984) on the basis of optical 

multi-channel spectrophotometry using the 5-meter Hale telescope.  Most recently, the 

effective temperature has been re-determined by Koester et al. (1985).  They used all 

the data from the two previous investigations and incorporated additional optical data, 

combined with new model atmosphere calculations, to arrive at Te=24±1x103K, and 

log(g)=8.0±0.3.  The temperature scale for the DB stars, has also been discussed by 

Liebert et al. (1986) based on I.U.E. observations alone. Their temperature 

determinations for the DB stars are somewhat higher.  A comparison of I.U.E. and 

optical data is discussed by Koester et al. (1985).  The actual position of the instability 

strip for the DBV stars remains somewhat uncertain, although it is clear that it is 

contained within the range from 20,000K to 30,000K.
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1.3  Summary of Previous Theoretical Work on Hot Degenerates

1.3.1 Evolutionary Models

The interior structure of pre-white dwarf stars ("PWDs") may be inferred 

from what is known of their possible progenitors and their descendants, the white 

dwarfs ("WDs").  One attractive possibility is that the progenitors of the PG1159 stars 

are the nuclei of planetary nebulae.  The evolution of PNN has been studied from a 

theoretical standpoint by several investigators (Paczynski 1971; Iben 1982, 1984; Iben 

and Tutukov 1984; Kovetz and Harpaz 1981; Schönberner 1979, 1981, 1983) but 

several basic questions remain.

PNN are assumed to be the hot cores of low mass asymptotic giant branch  

stars which have ejected most of their hydrogen rich envelopes during the planetary 

nebula formation phase.  Early evolutionary calculations by Paczynski (1971) showed 

the evolution of the remnant cores of red giants to high effective temperatures, at 

constant luminosity.  Such evolutionary tracks pass through the region of the H-R 

diagram populated by the PNNs. By altering the amount of hydrogen and helium-rich 

material remaining in the envelope following nebula ejection, Iben (1984) demonstrated 

a variety of evolutionary possibilities for PNN models.  His models go through various 

phases of shell helium and hydrogen burning before reaching the PWD phase.  

Schönberner (1979, 1981, 1983) has also followed the evolution of AGB stars by 

including a Reimers-like stellar wind.  His models also experience episodes of shell 

burning following nebular ejection while evolving through the PNN phase to a PWD 

configuration.

The results of these various investigations of PNN evolution bear a qualitative 

resemblance as a result of the similarities in the structure of the degenerate cores of the 

models.  The basic model of a 0.60Mo PNN consists of a hot, mostly degenerate core 

of about 0.58Mo. The combined effects of energy loss by neutrino emission and 

nuclear shell burning of helium and, perhaps, hydrogen produce one or more 

temperature inversions in the core.  The maximum temperature of the core is not at the 

center, but at about half way out in mass because the deep interior of the model is 
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cooled by neutrino emission. There can also be a second temperature inversion between 

that point and the nuclear burning shell.  Since the time scale for temperature change in 

the degenerate core is 10 to 100 times longer than the e-folding time for changes in 

luminosity (the evolutionary timescale), this residual thermal structure is retained 

through the PWD phase.  

On the other hand, the thermal timescale for the outer layers is of the same 

order as the e-folding time for luminosity.  Therefore, the details of shell flashes and 

mass loss in the AGB phase, and of nuclear burning on the remnant core, are important 

for determining the compositional and thermal structure of the outer layers of the PNN 

model at the approach to the PWD phase.  While the properties which affect pulsations 

in the high luminosity phases may be sensitive to the uncertainties of PNN evolution, 

these uncertainties should diminish in importance (through thermal relaxation) as the 

model cools.

1.3.2  Pulsation

Some preliminary work on the pulsation properties of hot white dwarf models 

appropriate to PG1159 has been reported by Starrfield et al. (1983, 1984).  Their 

studies, employing static stellar envelopes based on published evolutionary tracks of 

PWD models, show that partial ionization of oxygen and/or carbon at ~10-10 M o 

below the surface can drive high overtone nonradial g-modes.  This work indicates that 

the blue edge of the corresponding instability strips are very sensitive to the thermal 

structure and composition.  Pure carbon envelopes show a blue edge at Te< 100,000 K, 

while static envelopes with a composition of half carbon and half oxygen show a blue 

edge at Te>150,000K.  Many periods in the range from ~400-800 seconds were found 

to be unstable, in good agreement with the observed periods.  One difficulty, however, 

with carbon or oxygen partial ionization driving is the presence of significant amounts 

of helium in the observed spectrum.  Theoretical models with such compositions show 

the effects of helium "poisoning," and are found to be more stable (Pesnell 1984, 

private communication).

The same authors conducted an investigation of more luminous models 
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appropriate to K1-16 (Starrfield et al. 1985).  In that study, they searched for 

instabilities in periods that were of order 1000-4000 seconds.  They found such 

instabilities in models with homogeneous compositions of half carbon and half oxygen, 

with the longest unstable periods in models at around 155,000K and 2000Lo.  The 

region of peak driving in these models was found to be at a mass of ~10-8Mo below 

the surface, and is attributed to the cyclical ionization of oxygen.

1.4  The Scope and Plan of this Work

 The recently demonstrated measurability of the rate of period change, and 

therefore the rate of evolution, in objects representing the transitory phase of stellar 

evolution between PNNs and WDs places new demands on stellar models and the 

physics that goes into them.

Throughout the DOV phase, and in the hotter parts of the DB instability strip, 

the plasmon neutrino energy losses are a significant fraction of the photon luminosity 

of the star.  The rate of evolution of a cooling PNN is, therefore, controlled to a large 

extent by neutrino energy loss.  As shown by WHVH, a measurement of the rate of 

change of the pulsation period of a variable degenerate is a direct measurement of the 

cooling and contraction rates in the region of the star where the period is determined.  

Thus observations of d∏/dt may put interesting limits on the theoretically determined 

plasmon neutrino emission rates.  

Observational measurement of d∏/dt will provide a sensitive probe of the 

structure and evolution of DB white dwarfs.  The cooling rate is a monotonic function 

of the effective temperature.  By comparing the observed value of d∏/dt for a DBV star 

with the results of pulsation calculations using evolutionary models of 0.60Mo, we can 

place independent constraints on the effective temperature of the star. 

This dissertation is an attempt to create a self-consistent theoretical framework 

of evolutionary models within which we can interpret observations of the hot pulsating 

white dwarfs.  We examine the effect of the physics peculiar to the PNN and PWD 

models;  the temperature inversion caused by neutrinos and the effects of nuclear 
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burning in particular are especially important.  Chapters 3-5 explore the dependence of 

the adiabatic pulsation properties (such as the period spectrum and d∏/dt) on quantities 

such as stellar mass, composition, evolutionary phase, rotation, and neutrino emission.  

In Chapter 6, we examine the nonadiabatic properties of the evolutionary models.  We 

identify the nuclear burning shell as a region of the model that contributes to vibrational 

instability.   Finally, we will be able to comment on the evolutionary status of the DOV 

and DBV stars based on the results of this investigation.
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"Any fool can make a white dwarf."

                              -Icko Iben, Jr.

CHAPTER 2

EVOLUTIONARY MODELS OF POST-ASYMPTOTIC GIANT BRANCH STARS

2.1  Background

To study the pulsation properties of PNN and PWD models, we require self-

consistent evolutionary models which represent their important physical properties. In 

particular, models of early PWD stars should reflect the thermal structure of their PNN 

progenitors.  That structure determines, to a great extent, the period spectrum.  Because 

of the difficulties and uncertainties in modelling evolutionary histories of stars in their 

later stages, certain assumptions and approximations must be made.  These are 

discussed below. 

To establish the sensitivity of the pulsation results to the details of the input 

physics, we have constructed several PNN and PWD evolutionary sequences with 

different physical properties.  For the study of the effects of stellar mass and neutrino 

emission, we constructed PWD sequences of pure 12C composition for masses of 

0.40Mo, 0.60Mo, 0.78Mo, and 0.95Mo.  For the study of the effects of surface layer 

composition and nuclear burning, we used the evolutionary codes of Iben (1984); we 

also used a modified version of the code by Paczynski (1970,1974) to construct 

models of PNN with active nuclear shell burning regions, and PWD in which shell 

burning is negligible.  We computed models of pure 12C composition using an 

evolutionary code designed for the detailed study of white dwarf evolution employing 

the best current equation of state (Winget, Lamb and Van Horn 1993).  The Iben 

models include a sophisticated treatment of the effects of nuclear shell burning through 

prior evolutionary phases.  The easily modified Paczynski code allows us to explore
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the effects of varying fundamental parameters such as core composition, neutrino 

emission, and total stellar mass, in an economical way.  Taken together, these models 

form a framework of equilibrium models for pulsation analysis that will allow us to 

interpret observations of the pulsating degenerates.

In the following sections of this chapter we present the details of the models 

used for the pulsation analysis.  We present the details of the the input physics and 

computational techniques in Sections 2.2 and 2.3.  We exploit the systematic variations 

in the physical properties of the resulting evolutionary sequences in the manner 

outlined in Section 2.4.  Finally, we review the evolutionary properties of the PNN and 

PWD models in Section 2.5.

2.2  Pure 12C Models

We used an updated version of the Lamb and Van Horn (1975) white dwarf 

evolution code (WDEC) to produce evolutionary models of pure 12C PWDs for the 

pulsation study.  This code solves the equations of stellar evolution using the usual 

Henyey-type relaxation algorithm.  The interior model contains shells up to a mass 

where gravitational contributions to the luminosity are negligible and the static envelope 

approximation is valid. Typically, the last mass shell was at qs(≡[1-Mr/M* ]) =2x10-5.  

The outer boundary conditions were obtained by interpolation, within a grid in the 

log(R),log(L/Lo) plane, of static envelopes integrated from the surface down to qs. 

These envelopes were calculated with a modified version of the white dwarf envelope 

code described by Fontaine and Van Horn (1976).  To minimize the number of 

envelopes retained in computer memory, the evolution code employs the method of 

moving triangles described by Kippenhahn, Hoffmeister and Weigert (1967).  (In the 

preparation of equilibrium models for the pulsation analysis, static envelopes with the 

appropriate luminosity and radius for the core were integrated using a version of the 

white dwarf envelope code and fit to the interior models.)

In the degenerate core this code uses the equation of state described in detail in 

Lamb (1974).  This equation of state accurately includes the effects of Coulomb 
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interactions between the ions and electrons and other non-ideal effects important to 

white dwarf evolution at PWD and later stages. The negative correction to the internal 

energy due to Coulomb effects increases in magnitude with decreasing temperature and 

results in a gradual increase in the specific heat of PWD interiors (Lamb 1974, Lamb 

and Van Horn 1975).  Therefore, with these effects taken into consideration in a self-

consistent way, models of PWD stars can be expected to cool slightly more slowly 

than standard PNN studies (Iben 1984) have indicated when nuclear burning is not 

important.  

Although we did not include nuclear burning in these models, we do include 

energy losses by neutrino emission. We calculate rates of neutrino emission via the 

plasmon, pair, photo- and recombination neutrino processes using the analytic formulae 

of Beaudet, Petrosian and Salpeter (1967).  We follow the method of Festa and 

Ruderman (1969) to calculate the rate of bremsstrahlung neutrino emission.  We 

compare the validity of these neutrino emission rates with more modern rates (Munkata 

et al. 1985) in Section 2.4.5.

For the envelope calculations, we base our equation of state on that tabulated 

by Fontaine et al. 1977 (FGVH) for a Weigert V (0.999 12C by mass) composition.  

Early in this investigation we found an inconsistency in this equation of state.  

Apparently an ionization stage was left out of the original FGVH equation of state for 

carbon partial ionization.  This error, although incorporated in FGVH, is an artifact of 

the original Livermore equation of state which formed a basis for the equation of state 

compiled by FGVH.  In the region of carbon partial ionization under non-degenerate 

conditions the FGVH equation of state does not give self-consistent values for 

interpolated quantities.   In the un-ionized and fully ionized states, as well as when 

degenerate and partially ionized, the FGVH equation of state appears self-consistent.  

We have recalculated the equation of state in the region of difficulty and incorporated 

the corrections into the remainder of the FGVH tables.  

The hot envelopes of the PWD models made it necessary to extend the bounds 

of the equation of state tables at the low density, high temperature edge.  To make these 

corrections  and  extensions,  we used a perfect gas–radiation equation  of  state,  
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adding analytic electrostatic corrections as described by Cox (1968, Chapter 15).  We 

note that the results of the investigation of the adiabatic pulsation properties are not at 

all sensitive to any resulting inconsistencies in the envelope equation of state in this 

regime; the mass of envelope material involved is always less than 10-8Mo.  The mass 

in the surface convection zone was always less than 10-10Mo.  These layers are well 

outside the region of period formation for the modes of interest (see Chapter 4).

One of the goals of this work is to explore the importance of the peculiar 

thermal structure of PWD stars on the pulsation properties.  To isolate this effect from 

uncertainties in nuclear burning and surface composition, we did not include any 

nuclear burning in the pure 12C models.  However, we required starting models for the 
12C PWD calculations that accurately represent the prior history of AGB evolution, 

including the thermal structure appropriate to helium shell burning.  For this purpose, 

we selected initial models for 12C PWD evolution from the early parts of a PNN 

sequence calculated using the modified Paczynski code (see Section 2.3.2).  The core 

of the starting models is about 90% carbon and 10% oxygen, and is surrounded by a 

thin (0.02Mo) shell of helium.  Because of the high energy loss rates from neutrino 

emission in these hot evolutionary stages, the inner core shows a pronounced 

temperature inversion.  In addition, the 0.60Mo model has a secondary temperature 

maximum at the position of the helium burning shell source.

The switch from the chemically inhomogeneous PNN models to the pure 

carbon PWD models necessitates some thermal relaxation to compensate for the slight 

change in the equation of state and opacities.  At the epoch of the change in equation of 

state, the thermal timescale of the envelope (or, rather, the surface helium layer of mass 

∆M),

τth  =  0∫M* (c vT/ L)dm = <c vT>∆M/L (2.1)

(where L is the photon luminosity), is on the order of the evolution timescale (~1500 

years) through the rapid contraction phase.  Therefore, relaxation to the new equation 

of state is accomplished by the time the sequence reached the PWD cooling track.  

 
19



 To demonstrate the importance of energy loss by neutrino emission, we 

constructed two additional pure 12C sequences with suppressed neutrino emission.  

One of the sequences was evolved with neutrino emission rates reduced by a factor of 

two, while the other included no neutrino emission.  To retain consistency with the 

WDEC calculation that included neutrinos, the starting models for these sequences are 

from PNN sequences constructed with the Paczynski code that descended from AGB 

models with the corresponding reduction in neutrino emission.  The construction of the 

starting models is described in more detail in Section 2.3.2.

2.3   Compositionally Stratified Models with Nuclear Burning

Although the pure 12C models are not completely realistic, they allow us to 

explore the dependencies of pulsation properties on physical properties such as total 

stellar mass in a systematic way.  As far as we know, a PNN is chemically 

inhomogeneous, with a core composed of the ashes of helium burning surrounded by 

an active helium shell source, and, in some, "topped" with a hydrogen shell source and 

a thin envelope of primordial composition.  In the detailed study of PNNs the effects of 

nuclear burning and compositional structure are very important to the nonadiabatic 

analysis.  For these reasons, we have constructed PNN - PWD models with which to 

explore these physical properties.   The stars under consideration exhibit spectra with 

lines of helium, carbon, and oxygen.  There is no evidence for hydrogen at the surface 

of the DOV and DBV stars; hence we will restrict our examination to models without 

surface hydrogen layers (but see Chapter 7).

2.3.1 "Iben" Evolutionary Models

Two sequences of helium-rich PNN models have been produced using the 

stellar evolution code of Icko Iben, Jr. (1975, 1976, 1983).  The current version of this 

code was generously provided by Dr. Iben during his visit to the University of Texas in 

February 1985.    For one of the two sequences, the equation of state includes 

Coulomb interactions, using the analytic treatment described in detail in Iben and 

Tutukov (1984).  To judge the importance of these non-ideal effects, we calculated a 

parallel sequence without including the Coulomb interactions.  Energy generation by 
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nuclear burning of helium (Fowler, Caughlan and Zimmerman 1975), and energy loss 

by neutrino emission (Beaudet, Petrosian and Salpeter 1967, and Festa and Ruderman 

1969) are included in these sequences.  The mass included in the surface layer 

integrations was reduced to 10-12 Mo for this study.  This permits us to use just the 

interior of the evolutionary models in the pulsation analysis without loss of accuracy, 

since the region of period formation is well below 10-12Mo for all modes of interest 

(see Section 4.4).

The starting model for these stratified sequences is a hydrogen deficient 

0.60Mo PNN model at log(L/Lo)=3.5, (Iben 1984, Figure 8).  This model has a 

0.02Mo helium envelope, and a core composition of 55% carbon and 45% oxygen, by 

mass.  Details of the prior evolutionary history of this model can be found in Iben 

(1983,1984).  While this model does not include the effects of Coulomb interactions in 

the equation of state, the Coulomb effects were added at the beginning of the sequence.  

Since such effects are quite small at this high luminosity the model relaxed to the new 

equation of state almost immediately.

2.3.2  Other Models

To produce starting models for the WDEC sequences, we used a modified 

version of the evolution code of Paczynski (Paczynski 1970,1974, Kawaler 1982).  The 

PNN models produced with this code also provide us with an independent set of 

compositionally stratified PNN models with an active helium burning shell source.  We 

will compare these models with the Iben sequences to test the sensitivity of the 

pulsation results to the details of the evolutionary model construction and input 

physics.

This code uses the equation of state for an ideal, ionized, arbitrarily degenerate 

plasma for both the interior and envelope (Paczynski 1969,1970).  The equation of 

state does not include any non-ideal effects such as Coulomb interactions.  Neutrino 

emission, when included, is calculated using the prescriptions of Beaudet, Petrosian and 

Salpeter (1967) and  Festa and  Ruderman (1969).  Nuclear reaction rates for burning 

of hydrogen and helium are from  Harris et al. (1983),  with  screening  effects 
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included (Salpeter and Van Horn 1969).  As in WDEC, the method of triangles was 

used for obtaining outer boundary conditions for the stellar interior calculations.  In the 

PNN phase, 0.0001Mo was left in the static envelope calculations.  These envelopes 

were integrated using our version of the stellar envelope code described in detail in 

Paczynski (1969).  To prepare these models for the pulsation calculations, we re-fit a 

static envelope of 0.0001Mo to the core using the same envelope code.

This code uses tabular interpolation for all constitutive relations and nuclear 

burning rates, allowing very inexpensive calculation of extensive evolutionary 

sequences.  This allowed us to evolve a model from the zero-age main sequence to the 

thin double shell burning phase very economically.  To produce the eventual PNN 

model, we have evolved spherical, nonrotating main sequence Population I composition 

models of 3.00Mo, 4.25Mo and 5.00Mo up into the AGB phase.  Once the mass in the 

shell burning region became sufficiently small (~0.02Mo) we removed most of the 

convective envelope of the model, comprising roughly 80 percent of the original stellar 

mass.  Removal of mass from the AGB model was done in stages, with sufficient time 

allowed for the models to relax thermally following each reduction in mass.  The final 

masses for the 3.0, 4.5, and 5.0Mo models were 0.60, 0.78, and 0.95Mo respectively. 

Typically, less than 0.01Mo of hydrogen remained above the hydrogen shell source.

For the hydrogen deficient models, the final episode of mass stripping was the 

removal of mass down to the helium rich region below the hydrogen shell.  This 

resulted in an initial drop in luminosity, which was followed by a return to the previous 

luminosity after a few time steps, as the helium shell source adjusted to the new 

configuration.

In the models to be used as starting models for the pure 12C sequences of 

Section 2.2, nuclear burning in the resulting PNN models was artificially turned off as 

the models evolved across the PNN regime towards the constant-radius WD cooling 

track.  Note,  however, that the thermal timescale of the degenerate core is sufficiently 

long that the thermal structure resulting from the prior evolution is "remembered" for 

long periods of time, and is therefore incorporated in the pure carbon models.
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To illustrate the importance of neutrinos to the pulsation and evolutionary 

properties, we produced a 0.60Mo PNN sequence with neutrino emission rates reduced 

by a factor of two, and one with no neutrino emission.  Simply turning off neutrinos in 

a PNN whose parent included neutrinos does not change the thermal structure in a 

consistent way.  In standard stellar models, the central temperature inversion resulting 

from neutrino energy losses is established on the AGB over several million years.  

Since the PNN evolves so rapidly, compared to the thermal timescale of the core, the 

temperature profile of the core is almost unchanged through the PNN phase.  

Therefore, the parent model of the PNN must be evolved with the desired neutrino 

rates.  To ensure this self—consistency in the treatment of the temperature profile of 

the core, the parent model for these sequences were 3.00Mo asymptotic giant branch 

models evolved with reduced neutrino emission from the time of core helium 

exhaustion.  The outer 2.40Mo of the AGB models were then removed following the 

procedure  outlined  above, leaving 0.60Mo PNNs  to  evolve towards  the PWD  phase 

with interior thermal structures consistent with reduced neutrino energy losses.

2.4  Variation of Model Parameters

The philosophy of this investigation is to exploit the observed pulsation 

characteristics of PWDs and PNNs in order to explore the current areas of uncertainty 

in hot white dwarf structure and evolution.  We accomplish this by systematically 

varying one parameter of a model at a time to see the effects on the pulsation properties 

of the star.  We adjust the parameters within the limits of our knowledge (or ignorance) 

based on observation of PNNs and PWDs and, in some cases, on very clear theoretical 

arguments.  In this section we summarize the models used in the pulsation study.

We have produced models with the three evolution codes described earlier in 

this section that vary in total stellar mass, composition, treatment of nuclear burning, 

equation of state, and assumed rate of energy loss by neutrino emission, as shown in 

Table 2.1.  Of course, the evolution of the model within the sequence provides models
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Table 2.1

Summary of Evolutionary Sequences

 Name M/Mo Code Surface Burning E.O.S. Neutrinos8

W40GC1C 0.40 WDEC1 Pure 12C   No Coulomb4 BPS+FR

W60GC1C 0.60 WDEC Pure 12C   No  Coulomb4 BPS+FR

W60GC2C 0.60 WDEC Pure 12C   No Coulomb4 1/2(BPS+FR)

W60GC0C 0.60 WDEC Pure 12C   No Coulomb4 not included

I60BC1Y 0.60 Iben2 0.02Mo He   Yes Coulomb5 BPS+FR

I60BI1Y 0.60 Iben 0.02Mo He   Yes Ideal6 BPS+FR

P60BI1Y 0.60 Pacz3 0.02Mo He   Yes Ideal7 BPS+FR

P60BI2Y 0.60 Pacz 0.02Mo He   Yes Ideal7 1/2(BPS+FR)

P60BI0Y 0.60 Pacz 0.02Mo He   Yes Ideal7 not included

W78GC1C 0.78 WDEC Pure 12C    No Coulomb4 BPS+FR

W95GC1C 0.95 WDEC Pure 12C   No Coulomb4 BPS+FR

==========================================================

1. Lamb (1974), Lamb and Van Horn (1975)

2. Iben (1984), Iben and Tutukov (1984)

3. Paczynski (1970,1974), Kawaler (1982)

4. Lamb (1974), augmented Fontaine, Graboske and 

Van Horn (1977)

5. Iben and Tutukov (1984)

6. Iben (1975,1976)

7. Paczynski (1969,1970)

8. Beaudet, Petrosian and Salpeter (1967); Festa and

Ruderman (1969)
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of different luminosity and effective temperature.  The nomenclature used to describe 

the various evolutionary sequences is as follows.  Sequence names are of the form 

P60BI1Y:  the first letter gives the code used for calculating the sequence (P=modified 

Paczynski, I=Iben, W=WDEC), the next two digits are the total stellar mass, in solar 

units x 100.  The two letters following the mass indicate the treatment of nuclear 

burning (G=contraction and cooling only, B=burning included) and the equation of 

state (I=ideal, arbitrarily degenerate gas, C= Coulomb and/or other nonideal effects 

included).  The next entry is a digit that tells the factor by which the neutrino emission 

rates are multiplied (1=standard value, 0=neutrinos not included, 2=neutrinos cut by a 

factor of 2).  The final letter describes the composition of the stellar envelope 

(X=hydrogen and helium around a C/O core, Y=helium around a C/O core, C=pure 
12C).  Hence the P60BI1Y sequence is a modified Paczynski model of 0.60Mo that 

includes nuclear burning, uses an ideal gas equation of state, employs standard neutrino 

energy loss rates, and has a helium-rich envelope.

Each of the evolution codes has its own advantages and disadvantages.  The 

WDEC employs the best available equation of state, but only in calculating a pure 12C 

model with no nuclear burning.  The Iben models treat nuclear burning and 

composition transition zones carefully, but are very expensive to compute.  Also, the 

Iben equation of state does not allow for partial ionization of elements heavier than 

helium.  The modified Paczynski models have the virtue that the mass and composition 

in the outer layers are easily varied, as are the nuclear burning and neutrino rates; 

however, these models employ a greatly simplified interior equation of state.  We can 

take advantage of the individual strengths of these codes to explore a wide range of 

parameters of the real stars, and to pinpoint the reasons for different pulsation results 

from different models.

2.4.1  Luminosity and Effective Temperature

As outlined in Chapter 1, the effective temperatures and luminosities of the 

DOV and DBV stars are uncertain, demanding that we consider models spanning large 

ranges in these quantities.  We have computed many PNN-PWD sequences, each of 
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which spans large regions in the H-R diagram around the "knee" and down into the 

cooler WD regime.  The effective temperatures of these models range from 

approximately 100,000K to the maximum temperature of 200,000K, and then down to 

20,000K in the DBV region.  Luminosities range from log(L/Lo)=3.5 down to about 

log(L/Lo)=-2.0.  

We concentrate on three regions of the H-R diagram that are known to contain 

variables.  For the variable PNNs, we used models surrounding the point of maximum 

effective temperature.  For the pulsating PG1159 stars, models in the luminosity range 

of about log(L/Lo)=2.8 to 1.0 are most appropriate.  Models with effective 

temperatures between 20,000K and 30,000K are used to represent the DBV stars.

2.4.2 Stellar Mass

For PNN, the mass limits are constrained by the extreme mass dependence of 

the timescale for crossing the H-R diagram from AGB-like temperatures to 105K 

(Paczynski 1971, Schönberner 1979,1981).  Iben (1984) has pointed out that this 

timescale is inversely proportional to the mass of the star to the tenth power. The vast 

majority of hot degenerates with detectable nebulae must have masses of around 0.56-

0.64Mo based on the lifetimes of the associated nebulae.  Based on his models, 

Schönberner indicates a lower limit of 0.55Mo (1983, also Drilling and Schönberner 

1985).   Since K1-16 has an associated nebula, the most appropriate mass to consider 

for that star is 0.60Mo.  However, the same constraint is not necessarily applicable to 

the DOV stars with no associated nebulae, such as PG1159, and for those variables the 

effects of stellar mass on the pulsation properties must be explored (although see 

below).

We have constructed parallel pure 12C sequences of 0.40Mo, 0.60Mo, 

0.78Mo, and 0.95Mo (W40GC1C, W60GC1C, W78GC1C, W95GC1C).  The 

starting model for the W40GC1C sequence was the same as for the 0.60Mo sequence, 

but was homologously transformed down to 0.40Mo.  This model does not reach 

thermal equilibrium until a luminosity of 200Lo, and therefore is probably only useful 

for PG1159 and DBV studies.  Observationally, the mass distribution of single white 

 
26



dwarfs is quite narrow, and centered on 0.6Mo (Weidemann and Koester 1983, 1984).  

For this reason our emphasis will be on models of 0.60Mo.

2.4.3 Equation of State

Each of the evolution codes that we have used employs a different treatment of 

the equation of state.  As a result we can expect that differences in the pulsation 

properties between sequences will be partly caused by equation of state differences.  To 

help understand the influence of the non-ideal effects, we have calculated two parallel 

PNN-WD sequences of Iben models.  In one, we use the perfect degenerate ionized 

gas equation of state (I60BI1Y), while in the second sequence (I60BC1Y) we include 

the modifications due to Coulomb interactions (Iben and Tutukov 1984).

2.4.4 Composition

The core composition of a PWD is determined by the reactions of helium 

burning: 

2α ( α, γ ) 12C ( α, γ ) 16O . . .

The relative abundances of 16O and 12C depend sensitively on the core helium 

burning conditions, and on the history of helium shell flashing.  The Iben models have 

cores of about 55% carbon and 45% oxygen, while the modified Paczynski models are 

close to 90% carbon and 10% oxygen reflecting differences in the treatment of nuclear 

burning in the two codes.  

The envelope composition of PNN and PWD depends on the stage at which 

the star leaves the AGB, as well as the details of mass loss in the constant luminosity 

phase of PNN evolution.  As illustrated by the calculations of Iben (1983,1984), the 

amount of helium between quiescent nuclear shell  sources on the AGB is sensitive 

only to the stellar luminosity.  This relationship has also been noted for the modified 
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Paczynski AGB sequences of this work.  At the time the AGB core reaches 0.60Mo, 

the helium layer mass is about 0.02Mo.  For a core in the PNN region of high effective 

temperatures, the mass of hydrogen above the helium shell is less than ~0.005Mo.  

Since the observed DOV and DBV stars are strongly hydrogen deficient, we consider 

models which have lost all of their surface hydrogen during the transition from AGB 

star to PNN.  The initial mass of the surface layer of helium for the stratified sequences 

is taken as the amount of helium left following the departure from the AGB.  The 

composition transition zone structure is assumed to be unaffected by diffusion, as the 

evolutionary timescale for these stars is much shorter than the relevant diffusion 

timescales (Fontaine and Michaud, 1979,  Iben and McDonald 1985) in the DOV 

range; in the DBV range, this treatment is unrealistic.  We will show that the pulsation 

properties of DBV models are sensitive to the envelope composition.  Diffusion would 

increase the width of the carbon-helium transition layer slightly, emphasizing somewhat 

the differences that we find between the pure carbon and stratified sequences.

2.4.5 Neutrino Emission

As discussed in Sections 2.2 and 2.3, the neutrino energy loss rates used in the 

construction of the evolutionary models are those derived by Beaudet et al. (1967, 

BPS) and Festa and Ruderman (1969).  These rates are based on calculations within 

the Feynman and Gell-Mann (1958) formulation of the theory of weak interactions.  

The unification of the weak and electromagnetic forces within the framework of the 

Weinberg-Salam theory (Weinberg 1967, Salam 1968) led Dicus (1972) to investigate 

the implications of this theory on the pair, plasmon, and photo-neutrino energy loss 

rates for astrophysical plasmas.  With the mass of the W-meson of 81GeV the results 

of Dicus's calculations indicate that the plasmon neutrino rate, which is the most 

important for the models considered here (see Section 2.5.3), is within a few percent of 

the rates in BPS.

The neutrino energy loss rates for a wide range of densities and temperatures 

have been recalculated by Munkata et al. (1985) using the Weinberg—Salam theory.  

They  state that for the plasmon neutrino process, the ratio of the BPS plasmon 

 
28



neutrino rate to the rate of their work is:

(1/2 + 2 sin 2θw) 2 + (n/2 + 2 n sin 2θw) 2

where sin 2θw, the square of the sine of the Weinberg angle, is quoted as 0.217, and n 

is the number of massless neutrino species.  Hence, the energy loss rate from plasmon 

neutrino emission has been overestimated by BPS by only about 10-15%.  In principle, 

since neutrino emission from the interior of hot white dwarfs provides a significant 

fraction of the cooling, any measurement of the cooling rate of these stars could 

provide a stringent test of these theoretically determined neutrino rates.

The modified Paczynski models are the most appropriate for systematically 

changing the roles of nuclear burning and neutrinos.  We have constructed three 

parallel sequences of 0.60Mo models with this code, as described in Section 2.3.2, to 

investigate the effect of varying the neutrino energy loss rates in a simple way.  One 

sequence (P60BI1Y) uses the standard rates for nuclear burning and neutrinos.  

Another sequence (P60BI2Y) is evolved with neutrino emission rates cut by a factor of 

2, while the third has no neutrino emission (P60BI0Y).  Models from these three 

sequences were used to initiate three corresponding 12C WDEC sequences:  

W60GC1C, W60GC2C, and W60GC0C. 

2.5  Summary of Evolutionary Characteristics

2.5.1  Evolutionary Tracks

Because of the nature of the degenerate stellar configuration of the white dwarf 

model in the constant radius phase, the specific input physics used for a model of a 

given mass does not radically affect its evolutionary track in the H-R diagram.   In 

Figure 2.1, the tracks for some of the 0.60Mo models are plotted together to show the 

effects of different input physics.  Figure 2.1 shows how little the input physics affects 

the position of the evolutionary track below about 10Lo.  The divergence of the 

I60BC1Y and W60GC1C tracks at higher luminosities is primarily the result of the
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Figure 2.1:

Evolutionary tracks in the H-R diagram for 0.60Mo PWD models.  The solid tracks 

are for the Iben model that has a helium envelope and includes Coulomb effect in 

the equation of state (labeled I60BC1Y), and the pure 12C sequence with neutrino 

emission (labeled W60GC1C).  For comparison, we also show the 12C sequence 

with no neutrinos (W60GC0C, short-dashed line) and the Iben sequence without 

Coulomb effects (I60BI1Y, dashed line).
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different initial conditions, such as the temperature profile that results from nuclear 

burning.  The timescale for evolution down to 100Lo is sufficiently short (on the order 

of 5x104 years) that differences in surface composition and thermal structure have not 

damped out.  The dashed track that lies somewhat above the rest in parts of this 

diagram is the Iben sequence with no Coulomb interactions (I60BI1Y).  This sequence 

has a slightly greater radius at a given effective temperature because of the slightly 

higher pressure in the core compared with the Iben sequence that includes Coulomb 

effects.  Above 10Lo, the WDEC sequence with no neutrinos (W60GC0Y) lies above 

the other tracks.  Compared to the pure 12C sequence that includes neutrinos, this 

sequence has a hotter core for a given effective temperature because of the lack of the 

cooling effect of neutrino losses. 

In Figure 2.2, evolutionary tracks for the 0.60, 0.78, and 0.95Mo pure 12C 

sequences are plotted together.  The dominant effect here is the well known mass-

radius relation for degenerate configurations.  The radius of a white dwarf well below 

the Chandrasekahr limit is inversely proportional to the 1/3 power of mass; hence at a 

given effective temperature, lower mass white dwarfs have larger radii and therefore 

higher luminosities.

2.5.2  Luminosity Sources

The PNNs are an important transition phase in stellar evolution.  In this phase, 

the primary luminosity source switches from nuclear burning to gravitational 

contraction.  From the initial ignition of hydrogen in the core of its zero-age main 

sequence ancestor through the PNN phase, active nuclear burning provides the bulk of 

an intermediate-mass star's radiant energy.  In the constant luminosity phase of PNN 

evolution, the dominant energy source is the nuclear shell burning. In the case of PNNs 

that have lost mass down to the helium-rich layers, the dominant energy source is the 

helium-burning shell.  In the PWD phase, the helium shell source "runs out of steam" 

and the star shines by release of gravitational energy for the first time since the pre-

main sequence contraction phase. "Gravitational" luminosity is supplied by the release 

of heat from the core that has been stored throughout the prior evolution of the
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Figure 2.2:

Evolutionary tracks of pure 12C PWD models of 0.60, 0.78, and 0.95Mo.  Lines of 

constant ages are indicated by dashed lines; these are labeled by the logarithm of the 

age in years.  The ages are normalized to t=3000yr at log(L/Lo)=3.0.  The solid bar 

indicates the probable Te limits for PG1159-035.
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star, and from the release of gravitational energy by overall stellar contraction.  For 

hydrogen-deficient stars, this is the final phase of evolution as they slowly become true 

blue white dwarfs.

As we will see in Chapter 5, the details of nuclear shutdown in PWD models 

can affect the behavior of the rate of period change as a function of stellar luminosity.  

In addition, in models for which nuclear burning can contribute to the instability of a 

nonradial mode, the shutdown of the nuclear source eventually turns off the instability.  

We discuss this effect in Chapter 6.

Figure 2.3a shows the total photon luminosity as a function of time for various 

0.60Mo models.  The ages for all sequences are normalized to t=3000yr at 

log(L/Lo)=3.0.  We separate out the contributions of nuclear burning, neutrinos, and 

gravitational luminosity in I60BC1Y in Figure 2.3b, following Figure 3 of Iben and 

Tutukov (1984).  It is immediately apparent that at luminosities above 100Lo, the 

luminosity drops faster in models that do not include nuclear burning.  The core 

composition of P60BI1Y is essentially pure 12C, allowing us to compare the curves for 

the Paczynski sequence (P60BI1Y) with the pure 12C sequence (W60GC1C). We see 

that below 50Lo the curves nearly overlay.  This is a clear indication that nuclear 

burning is unimportant as an energy source by the time the star reaches this luminosity.  

The difference between the Iben curve and the pure 12C curves below 100Lo may be 

accounted for, in part, by the difference in core composition.  The Iben models, with 

45% oxygen by mass in the core, evolve slightly faster.  This is because the cooling 

rate of the core depends inversely on the mean atomic weight.  Hence, with heavier 

nuclei in the core, the Iben models evolve more quickly than the pure 12C models.  The 

nonideal contributions to the equation of state do not affect the cooling rate.  Only 

below 0.1Lo does the model with Coulomb interactions fade more slowly  than the 

model without them.

The effects of neutrino emission are clear in Figure 2.3 and Figure 2.4(a-c). 

Below 100Lo the WDEC sequence with neutrino emission (W60GC1C) evolves on a 

much shorter timescale than the sequence with no neutrinos (W60GC0C).  From 
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Figure 2.3 (a):

Luminosity as a function of time for 0.60Mo PWD sequences.  The solid lines are 

for the stratified model with Coulomb effects (labeled I60BC1Y) and the pure 12C 

sequence (W60GC1C).  The short-dashed curve is the pure 12C sequence with no 

neutrino emission, and the dashed line is the modified Paczynski sequence that 

includes nuclear burning (P60BI1Y).  The stratified model without Coulomb effects 

(I60BI1Y) diverges from the I60BC1Y curve only at very low luminosity.
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Figure 2.3 (b):

Contributing luminosity sources for the stratified 0.60Mo sequence I60BC1Y.  The 

total photon luminosity is indicated by the dashed curve.  Lgrav includes the effects 

of residual gravitational contraction and conductive cooling.  Ater Figure 3 in Iben 

and Tutukov 1984, Ap. J., 282, 615.
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Figure 2.4(a) we see that at that luminosity, the neutrino luminosity approaches the 

photon luminosity.    From an age of 105 to 107 years, the neutrino luminosity exceeds 

the photon luminosity in the W60GC1C sequence.  Hence, without this additional 

energy loss mechanism, the W60GC0C sequence takes a longer time to radiate away its 

internal energy.

2.5.3  Core Temperature Inversion

The effects of neutrino cooling of the deep interior and nuclear shell burning 

combine to produce a pronounced core temperature inversion in the AGB evolutionary 

phase.  Typically, the maximum interior temperature occurs below the helium shell 

source, at roughly the half-mass point.  In the 0.60Mo models, however, the temperature 

profile shows a double-hump because of copious emission of plasmon neutrinos just 

below the helium shell.  As helium burning goes away, the double-humped temperature 

profile becomes single-humped with the maximum near the position of the "fossil" 

burning shell.  Figure 2.5 shows the run of temperature and total energy generation rate 

(nuclear burning, subtracting energy losses by neutrino emission) for some 

representative models from the I60BC1Y sequence. The core does not become 

isothermal until the models drop well below one solar luminosity.

The behavior of the central temperature as a function of time is illustrated in 

Figure 2.6 for the 0.60Mo models.  In the hot PWD phase, the core is only mildly 

degenerate, and gravitational contraction leads to a very slow rise in the core temperature 

as the star drops in total luminosity.  When the photon luminosity and the neutrino 

luminosity become comparable, the core begins to cool.  This occurs at an age of about 

105.5 years for the Iben models, and 105 years for the WDEC and modified Paczynski 

models.  The slight difference in age is caused by the dependence of the neutrino 

emission rates on the core composition: with half oxygen, the Iben models have cooler 

cores and therefore lower neutrino emission rates.  The model without neutrino emission 

(W60GC0C) takes longer to begin cooling in the center.  This model must wait until the 

core has become sufficiently degenerate so that the effects of conduction alone begin to 

cool it down. 
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Figure 2.4 (a)-(c):

Luminosity as a function of age for (a) 0.60Mo, (b) 0.78Mo, and (c) 0.95Mo pure 
12C PWD sequences.  The solid lines represent the photon luminosity; the total 

energy loss by neutrino emission is indicated by the dashed lines.
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Figure 2.5 (a):

Log of the temperature versus fractional radius for four models in the 0.60Mo 

stratified sequence (I60BC1Y) with log(L/Lo)=3.21, 2.54, 2.01, and 0.99.

Figure 2.5 (b):

The logarithm of the magnitude of the energy generation rate per gram, ε, as a 

function of the fractional radius for (from left to right for curves below log|ε|=-2) 

log(L/Lo)=3.21, 2.54, 2.01, and 0.99 in sequence I60BC1Y.  Dashed lines indicate 

that the sign of ε is negative (neutrino emission); solid lines indicate positive values 

of ε (nuclear burning).
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Figure 2.6:

Logarithm of the central temperature as a function of age for several 0.60Mo PWD 

sequenes.  From top to bottom we have: the pure 12C sequences with increasing 

neutrino emission rates: W60GC0C, W60GC2C, and W60GC1C; the modified 

Paczynski sequence P60BI1Y; and the two stratified sequences I60BC1Y and 

I60BI1Y.
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" You may fly to poetry and music, and quantity and number will face you in your 

rhythms and your octaves"

                                 -Alfred North Whitehead

CHAPTER 3

LINEAR ADIABATIC NONRADIAL OSCILLATIONS AND

SEISMOLOGICAL DIAGNOSTICS

3.1 Introduction

In this chapter, we introduce and develop the tools needed to study the 

oscillation properties of our stellar models.  For more complete treatments of much of 

this material, see the discussions in Ledoux and Walraven (1958), Unno et al. (1979), 

Cox (1980), Carroll (1981) and Winget (1981).

Our starting point is the set of equations of nonrelativistic fluid dynamics 

coupled with heat flow in a nonrotating, nonmagnetic self-gravitating system.  The first 

of these are the equation of conservation of mass,

∂ρ = - ∇ •  ( ρv )
∂t                , (3.1)

and the equation of motion,

ρ ∂v  = - ∇ P - ρ ∇Φ   .
  ∂t (3.2)

In equation (3.2) (and below) the pressure tensor has been reduced to the isotropic 

hydrostatic pressure P.  The scalar gravitational potential field, Φ, is obtained from 

Poisson's equation,
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∇ 2Φ = 4 πGρ . (3.3)

By neglecting viscosity,  we can express the equation of energy conservation in the 

form

dq   dE     d(1/ ρ)
__ = __  + P ______ (3.4 a)
dt   dt       dt

where q is the heat content per unit mass, and E is the specific internal energy.  We 

may write the left-hand side of equation (3.4 a) as

  ds        1
T __ =  ε - __ ∇ • F (3.4 b)
  dt             ρ

(Cox, 1980) where s  is the specific entropy, and F is the energy flux. The quantity ε is 

the net rate of energy generation per gram (from nuclear sources and neutrino sinks), 

which, like the equation of state, is assumed to be completely determined as a function 

of density, temperature, and chemical composition.

The energy flux F is the sum of the radiative flux and the convective flux.  

Using the radiative diffusion approximation, we have an expression for the radiative 

flux,
          4π
Frad = - ____  ∇ J (3.5)
         3  κ ρ

where J, the mean intensity, is given in the Eddington approximation by

    ac       1    ds
J = __ T 4 + ___ T __ (3.6)
    4 π      4 πκ   dt

where κ is the Rosseland mean opacity, and a and c  are the usual fundamental physical 

constants.
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In the next section we present the linearized equations corresponding to 

equations (3.1) - (3.6).  We then show how the order of the system of equations is 

reduced under the adiabatic approximation, and discuss the appropriate boundary 

conditions.  We detail the various procedures we used in solving the adiabatic 

equations in Section 3.5.  In Section 3.6 we review the variational form for the 

oscillation frequency that leads to the formulation of the adiabatic weight functions.  

We demonstrate the effects of slow rotation on the resulting frequencies in Section 3.7.

3.2 The Linearized Perturbation Equations

We begin by assuming that there exists a static equilibrium solution to 

equations (3.1) - (3.6) characterized by v =0 everywhere.  We now introduce 

perturbations to the physical state of the system, such that the perturbed state is also a 

solution.  The perturbed quantities may be written in the form

x( r ,t) = x o( r ,t) + x'( r ,t) (3.7)

where xo( r ,t)  is the equilibrium value, and x'( r ,t)  is the Eulerian perturbation in 

x , at position r  and time t .  To first order, the Lagrangian perturbation of x , written as 

δx , is expressed in terms of the Eulerian perturbation as

δx = x'( r ,t) + δr  • ∇ xo( r ,t)  . (3.8)

To obtain the equations governing the perturbations to the physical variables, 

we replace the quantities in equations (3.1) - (3.6) with their perturbed form as in 

equation (3.7).  The equilibrium equations  may then be subtracted off, leaving the 

perturbed fluid equations.  If the perturbations themselves are small, then we retain only 

terms to first order in the perturbation variables.  This procedure leads us to the set of 

linearized perturbation equations (in which we drop the zero subscript for equilibrium 

quantities):
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δρ
__  = - ∇ • δ r    , (3.9)
 ρ

d2δr      ∇ P'    ρ'
____  = -  ___ +  __  ∇ P - ∇Φ '  , (3.10)
 dt 2       ρ            ρ2

                             δρ    1
∇ 2Φ' = -4 πG (1+ __  - __ δr  • ∇ρ  )  , (3.11)
                              ρ          ρ

  d δs         1
T ___ = δ( ε - __ ∇• F)    , (3.12)
  dt             ρ

δF = δFrad      , (3.13)

             4 π        '
F'   =  - [ ____   ∇ J ]   , (3.14)
 rad        3 κ ρ

      a c        T   d δs
J' =  ___ T 3T'+ ___  ___   . (3.15)
       π        4 πκ   dt    

In deriving equation (3.12) we have used the assumption that the equilibrium model is 

in thermal balance, i.e. dso/dt  = 0 everywhere.  Because of their evolutionary nature, 

the PWD models considered here are not strictly in true thermal balance. In Chapter 5 

we demonstrate that neglecting thermal imbalance should not affect the results of our 

adiabatic calculations.  

Note that in equations (3.13) and (3.14) we only consider the perturbation of 

the radiative flux.  We assume that the convective flux is "frozen in" and therefore the 

perturbations of the convective flux are negligible.  Investigations of the adiabatic 

pulsation properties are insensitive to this assumption.  However, for a nonadiabatic 
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analysis, the consequences of assuming frozen-in convection are potentially important.  

Since an adequate time-dependent theory of convection does not exist, we are forced to 

retain this assumption through the remainder of this work.  In any case, for those 

models that were too hot to show any significant convective regions, this assumption is 

adequate (see also Chapter 6).  Equations (3.9)-(3.15) are the equations that we will use 

to describe linear nonradial oscillations in a nonrotating, nonmagnetic, self-gravitating 

fluid system.

3.3 The Adiabatic Equations

3.3.1 The Adiabatic Approximation

The complexity of the equations of the previous section can be greatly reduced 

if we consider them under the adiabatic approximation i.e. that no heat is gained or lost 

from the system either locally or globally.  Locally, the adiabatic approximation is a 

good one for oscillatory motion in regions where the amount of heat lost during a 

pulsation cycle is much smaller than the amount of heat energy stored there.  This 

condition may be expressed as

∏puls  <<  τth (mr ) (3.16)

where τth (mr )  is the thermal timescale defined in equation (2.1) at the mass mr ,  and 

∏puls is the pulsation period.  In most models considered in this work, the mass at 

which the adiabatic condition begins to be violated is outward from about 10-8 Mo 
below the surface.  Hence, the results of adiabatic calculations should provide an 

excellent approximation to the oscillation periods because (3.16) is satisfied for all but 

a negligible fraction of the mass of the star.

The adiabatic condition is equivalent to the statement that  T(d δs/dt)=0  

everywhere in the star.  Hence equations (3.12)-(3.15) are superfluous provided that 

the time derivative of the entropy perturbation is negligible.  With this assumption we 

can use a Maxwell relation for a fluid element to write:
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δP     dlnP      δρ       δρ
__ =  ( ____)    __ =  Γ1 __ (3.17)
P      dln ρ ad  ρ        ρ

Here the adiabatic exponent Γ1≡(dlnP/dln ρ) ad.

3.3.2  The Dziembowski Formulation

In the adiabatic approximation, the equations that remain nontrivial are 

equations (3.9), the three components of equation (3.10), and (3.11). These, along with 

the adiabatic condition (3.17) define a system of 6 equations in the unknowns P' , ρ' , 

Φ' , and the three components of δr .

We now assume the spatial and time dependence of the perturbations can be 

separated in the following way (Cox 1980, Unno et al. 1979):

x'(r, θ, φ,t) = x'(r) Y l m( θ, φ) ei σt , (3.18)

where Yl m( θ, φ) , the usual set of spherical harmonics, contain the angular dependence 

of the perturbation, and x'(r)  is the radial component of the perturbation.  The time 

dependence is in the term ei σt , with σ as the angular frequency of oscillation of the 

mode described by the values of l  and m.

With the perturbation variables in this form, the equations of linear, adiabatic 

oscillation can be written as four first order linear differential equations whose 

dependent variables include the radial and horizontal displacements. Using the 

transformation of variables introduced by Dziembowski (1971), the four equations are

 dy 1    V            l ( l  +1)   V       V
____  = ( _ - 3) y 1 + [ ________  + __] y 2+ __ y 3 (3.19)
dlnr    Γ1             C 1ω2     Γ1       Γ1

 dy 2
____  = (C 1ω2+Ar)y 1+(1-U-Ar)y 2+ Ary 3
dlnr (3.20)
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 dy 3 
____  = (1-U) y 3 + y 4 (3.21)
dlnr

 dy 4           UV              UV  
____  = -UAry 1+ __ y 2 +[ l ( l +1)- __ ] y 3 - Uy 4
dlnr           Γ1              Γ1

(3.22)

This system is useful, as it has several computational advantages as discussed in 

Winget (1981) and Unno et al. (1979).  Under the Dziembowski transformation, the 

four variables of the system are the dimensionless quantities:
    δr                 1   P'
y1= __    ;     y 2 = ___ ( ___ + Φ′) ;
    r                gr   ρ

      1               1  d Φ'
y3 = __  Φ′  ;    y4 =  _ ____
     gr               g  dr      . (3.23)    

The equilibrium quantities are also expressed in a dimensionless form, with:

C  ≡ ( r ) 3 M    ;     ω2   ≡  σ2  R 3
 1    R    mr                 GM

U ≡  dlnm r      ;     V ≡ - dlnP
          dlnr                   dlnr

Ar ≡ r dρ -  r  dP
     ρ dr   Γ1P dr      (3.24)

where M and R are the mass and equilibrium radius of the model.

3.3.3  Adiabatic Boundary Conditions

In order to solve equations (3.19)-(3.22), we require boundary conditions at 

the center and surface.  These are obtained by using natural physical constraints on the 
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overall problem.  The boundary conditions for the center result from the requirement 

that all physical variables remain finite. They are derived by expanding the linearized 

oscillation equations about r=0 , and keeping only first order terms.  This gives:

l y2 - C 1ω2 y 1 = 0 (3.25)

and

l y3 - y 4 = 0 (3.26)

at the center.

At the surface of the equilibrium model, Po=0 ; if we assume vanishing 

pressure in the perturbed state, then P=0 as well.  Hence P and δP both vanish at the 

surface.  In addition, for regular solutions, the quantity δP/P  must remain finite at r=R  

(Cox 1980, §17.6).  Under these conditions, the perturbed momentum equation can be 

manipulated to yield

                      l ( l +1)
y1(C1ω2+4-U-V) +y 2 [V- ______ ] -Vy 3 -y 4 = 0
                       C 1ω2

(3.27)

at the surface.  The final boundary condition is that the Eulerian perturbation to the 

gravitational potential, and the force per unit mass, be continuous across the outer 

boundary.  Thus, at the surface, we must have

Uy1 + ( l +1)y 3 + y 4 = 0 . (3.28)

These boundary conditions are appropriate for the modes we analyze; but they fail for 

very short or very long period modes in white dwarfs (Hansen et al. 1985).

We now have four linear, homogeneous, first order differential equations, and 

four boundary conditions.  Since the system is homogeneous, we are left with an 

arbitrary normalization.  For the time being, we choose 
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y1 = 1   at  r=R . (3.29)

Thus we solve the equations (3-19)-(3.22) with boundary conditions (3.25)-(3.28) and 

normalization (3.29) for the eigenfunctions y  and the eigenvalue σ2, the square of the 

angular oscillation frequency.

3.4  A Local Analysis: Propagation Diagrams

3.4.1  Dispersion Relation

Although the full set of adiabatic equations was used in the calculations, in the 

following analytical discussion we neglect perturbations in the gravitational potential 

(the Cowling approximation). This is a reasonable assumption for the high order 

modes which are mainly of interest here, and greatly simplifies the discussion without 

changing its physical character.  We assume the radial part of the eigenfunction is 

proportional to ei kr r , where kr  is the radial wave number.  In this limit, the adiabatic 

equations lead to a local dispersion relation for the radial wave number kr  (Unno et al. 

1979):

 k r 2 = ( σ2cs2) -1 ( σ2-S l 2)( σ2-N2)  (3.30) 

where

N2=-gA        (3.31)

is the square of the Brunt-Väisälä frequency and
                          
      l ( l +1)P Γ1           c s2
Sl 2 = _________   =  l ( l +1) ___
        r 2 ρ               r 2    (3.32)

is the acoustic frequency.  Here σ is the eigenfrequency, cs is the local adiabatic sound 

speed, P is the total pressure, and l  is the colatitudinal angular index of the spherical 

harmonic;  other symbols have  their usual meanings.   A is related to the 
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Schwarzschild criterion for convective stability so that N2 is negative in regions of 

convective instability.

For a given value of l , the adiabatic oscillation equations allow eigensolutions 

containing an integral number of nodes in the radial direction.  We call these solutions 

"modes" of degree l  and order k , where k  is the number of radial nodes.  The 

dispersion relation (3.30) shows under what conditions a given mode is locally 

propagating.  If σ2 is greater than both Sl 2 and N2 (p-modes) or σ2 is less than both 

of those frequencies (g-modes), then k r 2>0  and the mode is oscillatory and 

propagates locally.  Otherwise kr 2<0, and the the mode is locally evanescent.

Taking the limit of σ2>>Sl 2,N 2 (the p-mode propagation region), equation 

(3.30) becomes

kr 2 ≈  σ2 cs-2 (3.33)

and hence pressure is the principle restoring force for p-modes.  In the opposite limit, 

σ2<<Sl 2,N 2 where gravity modes propagate, equation (3.30) becomes

kr 2 ≈  σ−2 r -2 l ( l +1) N 2 . (3.34)

The propagation of g-modes is therefore determined by the Brunt-Väisälä frequency, 

with gravity acting as the restoring force.

3.4.2  The Propagation Diagram

The global trends in the properties of nonradial oscillations are best illustrated 

with propagation diagrams.  These plots of the squares of the Brunt-Väisälä frequency 

and the acoustic frequency as functions of position within a stellar model graphically 

illustrate the regions of a model within which a nonradial mode may propagate. (For a 

complete discussion, see: Unno et al. 1979, §14; Cox 1980, §17.10.)
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The nonradial g-modes are locally propagating where σ2<Sl 2,N 2; pressure 

modes propagate locally where σ2>Sl 2 ,N 2 .  In Figure 3.1 we show a typical 

propagation diagram for a PWD model with a convection zone near the surface. In a 

centrally condensed model, there may exist a local maximum in N2 at the point in the 

star below which most of the mass is contained (Cox 1980, §17.10). In this model, with 

central condensation ( ρc/ ρ)  of 49.7, that point is at r/R * ~0.4.  We expect, then, that 

low order (high frequency) g-modes may be effectively trapped below that point.

As the PWD evolves, the central condensation decreases, and the degeneracy 

boundary moves outwards in mass. In a degenerate core, the efficient transport of heat 

by conduction leads to an isothermal and isentropic core.  Hence, the density gradient 

approaches the adiabatic value, and A→0 . Hence, as the PWD becomes more 

degenerate, N2 will decrease (Osaki and Hansen 1973), and the local maximum will 

decrease in contrast.  Hence, as evolution proceeds, we expect the periods of the 

nonradial g-modes to generally increase and the region of propagation to gradually 

shift towards the outer portions of the star.

3.5 Numerical Solution of the Adiabatic Equations

We study the adiabatic nonradial oscillations of the PWD models using 

computer codes that solve equations (3.19)-(3.22) subject to the boundary conditions 

(3.25)-(3.29).  As Starrfield et al. (1983,1984) demonstrated, if the observed pulsations 

of a few hundred seconds in the DOV stars are indeed nonradial g-modes, then they 

must be very high overtones, which means many nodes in the displacement 

eigenfunctions.  The pure 12C input models considered here contain between 250 and 

300 zones, with the largest zones (∆q<0.05 ) just interior to the primary temperature 

maximum.  Our pulsation codes based on the Newton-Rapheson iteration algorithm 

(Carroll 1981, Winget 1981) require finer zoning than available in these equilibrium 

models to resolve all radial nodes.  In addition we also seek rates of change of periods; 

the eigenvalues are to be differenced in time along an evolutionary sequence of 

equilibrium models.  Therefore, we require that the eigenvalues be computed in a very 

accurate and consistent way from model to model.  Unambiguous mode identification
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Figure 3.1:

Propagation diagram for 0.95Mo pure 12C PWD model at log(L/Lo)=3.10.  The 

solid line is the square of the Brunt-Väisälä frequency (N2).  The dashed line is the 

square of the acoustic frequency (Sl 2) for l =1; the dotted line, (Sl 2) for l =2.
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is also necessary to ensure that we are differencing periods representing the same mode 

in all models.  The Newton-Raphson method, which uses only a second-order 

difference scheme, is not adequate for these tasks.

For the adiabatic investigation, we use a fourth-order Runge-Kutta integrator 

with error limiters written by H. A. Watts and L. F. Shampine of Sandia Laboratories, 

NM.  The overall method of solving the eigenvalue problem is by "shooting" from the 

model center to its surface in an iterative fashion until all boundary conditions are 

satisfied.  To resolve closely spaced nodes and to satisfy requirements of the integrator, 

the equilibrium model quantities are interpolated between zones, by means of cubic 

splines, in the process of integration.  This typically results in 2000 to 3000 effective 

zones.  This procedure produces periods and eigenfunctions that are insensitive to the 

zoning details of the equilibrium models.  The phase diagram scheme (Scuflaire 1974, 

Osaki 1975; see also Unno et al. 1979, §16; or Cox 1980, §17.11) of mode 

classification has been used to evaluate the order, and hence identify, a given mode.  

For white dwarfs, which are relatively simple beasts, this scheme is straightforward to 

apply.  We neither miss nor misidentify a mode as it evolves with time.

3.6   Variational Principle and Weight Functions

The equations of motion for adiabatic nonradial oscillations may be derived 

from a variational principle which expresses the frequency eigenvalue in terms of total 

integrals of the eigenfunctions weighted by various physical quantities taken from the 

evolutionary equilibrium stellar model.  In the usual formulation it is assumed that both 

the pressure and density vanish at the stellar surface ("zero" boundary conditions).  

This assumption, coupled with the self-adjoint nature of the adiabatic system, is 

sufficient to demonstrate the variational properties (Cox 1980).

 
60



As we will show, the variational expression for σ2 may be cast in the form:

      ∫ f[Y(x),x]dx
σ2 =  _______________ (3.35)

            ∫ g[Y(x),x]dx

where x  is some stellar quantity such as radius, Y(x)  is a quadratic function of the 

eigenfunctions, y , (as in Dziembowski 1971) and f( y ,x)  and g( y ,x)  are 

functionals of the indicated arguments.  The denominator is proportional to the kinetic 

energy of oscillation.  The integrand of the numerator serves as a "weight" function in 

that its relative values through the star inform us, in effect, where the eigenvalue is 

established.  It has been used in an astrophysical context by Epstein (1950), Goossens 

and Smeyers (1974), and Schwank (1976) among others.  The formulation we shall 

use is based on that of Unno et al.(1979,§13). After performing some integrations by 

parts we may combine equations (13.13) and (13.15) of Unno et al.  and the definitions 

of the Dziembowski variables, y, to find:

     0∫R {C( y,r)+N( y,r)+G( y,r)} ρr 2 dr
σ2 = ________________________________ , (3.36)

             0∫R T( y,r) ρr 2 dr

where

T( y ,r) = r 2 [y 12+l ( l +1)(g/r σ2) 2 y 22] (3.37)
 

C(y ,r) = g 2l ( l +1) S l -2  (y 2 - y 3) 2 (3.38)

N(y ,r) = r 2 N2 y12 (3.39)

G(y ,r) = -gr U -1  [y 4+l(l+1) y 3] 2  . (3.40)
          

Here T( y ,r)  is proportional to the kinetic energy density, C( y ,r)  contains the 

square of the acoustic frequency, N( y ,r)  varies directly with the Brunt-Väisälä 

frequency N2(r) , and the perturbative information in G(y ,r)  involves only the 
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gravitational eigenfunctions y3 and y4.  Thus, C, N, and G may be regarded as weight 

functions which individually provide diagnostic information on acoustic, gravity wave, 

and gravitational field contributions to σ2.  For example, if N2(r)  were to change by a 

small amount δN2  without any corresponding change in the other physical 

characteristics of the static model (which is highly unlikely), then it may easily be 

shown that the eigenvalue would change by

                           δN2
 δσ2 =  [T(R)] -1  0∫R N( y ,r) ___ ρr 2 dr (3.41)
                           N2

 

(Note that Rayleigh's principle guarantees that induced changes in the eigenfunctions 

need not be considered because those changes would result in second order corrections 

to σ2 .)  N( y ,r)  is then a kernel for δσ2/ δN2 .  Such kernels are an essential 

ingredient in stellar seismic diagnostics and inverse theory and are presently being 

explored for solar (Deubner and Gough 1984) and terrestrial (Backus and Gilbert 

1967) seismology.  In this work we shall use these kernels to guide us in our 

interpretation of the oscillation behavior of hot PWD stars. 

Another use of the variational principle is as a numerical check on the accuracy 

of the computed eigenfunctions. That is, computed eigenfunctions are inserted into 

equations (3.35) and (3.36) to find the variational value of σ2. This is then compared to 

the eigenvalue computed directly from the analysis that yielded the eigenfunctions in 

the first place. The agreement between the variational value of σ2 and the directly 

computed value may be considered a figure of merit for σ2.  We find agreement to 

three to five significant figures in σ2 computed in these two ways.  Some of this small 

error is most certainly attributable to differences in the surface boundary condition 

employed by the two techniques.  The variational expressions given here require the 

vanishing of surface pressure and density, whereas we employ somewhat more realistic 

subsurface boundary conditions for the actual calculations.
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3.7 Rotational Splitting of the Eigenfrequency

In nonrotating stars undergoing nonradial pulsation, eigenvalues 

corresponding to modes with the same degree l  and radial order k, but different values 

of m are degenerate; rotation lifts this m degeneracy.  Our separation of the oscillatory 

perturbations into spherical harmonics implies that we have running waves in the 

azimuthal (φ) direction, with phase velocities inversely proportional to m.  The sign of m 

indicates the direction of propagation; modes with positive values propagate in the - φ 

direction.  In a rotating star, with Ω∝φ,  modes differing in m and therefore in azimuthal 

phase velocity will be observed at frequencies that differ by approximately the rotation 

frequency multiplied by the difference in m (Cox 1980 §17 and §19, see also Cox 1984 

and references therein).

In particular, for the case of slow (∏rot >>∏puls ) uniform rotation of 

frequency Ω with the rotation and pulsation axes aligned, the pulsation frequency as 

observed in an inertial frame is given by

σobs =  σo - m  Ω (1-C rot )  . (3.42)

Here, σo is the pulsation frequency in the rotating frame of the star. Crot  is a number 

that depends on the equilibrium configuration of the star and on the adiabatic 

displacement eigenfunctions:

         0∫R ρr 2 dr [2ab + b 2]
Crot = __________________________   (3.43)
       

0∫R ρr 2 dr [a 2 + l ( l +1) b 2]

where a and b are proportional to the radial and horizontal displacements, respectively 

(Cox, 1980).  In particular, we use 

a = ry 1    ;   b = gy 2/ σ2   (3.44)

in the calculation of Crot .
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To calculate rotational splitting in the presence of differential rotation, we 

follow the approach of Hansen, Cox and Van Horn (1977).  Rotation is assumed to be 

cylindrically symmetric, with no angular momentum exchange between cylinders of 

fixed mass. The latter assumption precludes the possibility of momentum transfer by 

convection, etc.  For each model in an evolutionary sequence, we used an angular 

momentum distribution computed for white dwarf  configurations (Ostriker and 

Bodenheimer 1968) to derive the angular rotation velocity as a function of polar radius, 

ϖ.  We fit a quadratic of the form

 
Ω(ϖ) = Ωo (1 +  Ω1ϖ + Ω2ϖ2)     (3.45)

 
to the Ostriker and Bodenheimer distribution, where Ωo is the angular frequency of 

rotation at the pole, and Ω1 and Ω2 are evaluated in a least squares fit to the Ostriker 

and Bodenheimer rotation law.

 

With a rotation law of this form, the expression for rotational splitting 

becomes

 

σobs  = σo - m Ωo(1-C rot -C1)            (3.46)

 

where Crot  is the uniform rotation coefficient and C1[=C 1(| m|)]  contains the 

nonuniform rotation effects.  The value of C1  depends on the adiabatic pulsation 

properties, the equilibrium structure of the star, and the values of Ω1  and Ω2  (see 

Hansen, Cox and Van Horn 1977, Appendix A); the expression for C1(3)  for the 

l =3  modes was evaluated using the method of Cuypers (1980).  Note that C1  

introduces an asymmetry with respect to m into the splitting since it depends on | m|  

and not m. 
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CHAPTER 4

ADIABATIC OSCILLATIONS IN HOT DEGENERATES

4.1  Introduction

The most simple and direct comparison that we can make between models and 

real stars is with the pulsation periods themselves.  The periods of most variable stars 

can be determined to two significant figures with relative ease; these numbers 

immediately constrain the type of star and the type of mode that is being observed.  

Once the type of star and mode are known, the properties of appropriate theoretical 

models then provide important information about the internal structure of the stars.  

The primary purpose of this chapter is to present the results of the numerical 

calculations of the adiabatic oscillation properties for the DOV and DBV evolutionary 

sequences.  We concentrate on the high order (k  > 10) g-modes, as the periods of these 

modes correspond most closely to those observed in the DOV and DBV stars.  For 

completeness, however, we will also present the periods for some of the low order g-

modes.  

In the Section 4.2, we present the g-mode pulsation period spectrum for 

models of planetary nebula nuclei and hot white dwarfs.  We also discuss the basic 

form of the eigenfunctions in that section.  From these numerical results we then show 

how the adiabatic periods depend on model parameters.  In Section 4.3, we derive 

analytic expressions for the characteristic mode spacings and calculate them for the 

models.  Next, we use the adiabatic weight functions to show which parts of the star are 

most important in setting the period.  In the final section, we extend the adiabatic 

analysis down to temperatures and luminosities appropriate to the DBV stars, exploring 

the possibility of a direct evolutionary connection between the two classes.
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4.2  Period Spectra and Eigenfunctions for DOV Models

The periods for some representative g-modes in the DOV sequences are 

presented in Tables 4.1-4.4.  The first three tables are for the pure carbon sequences 

with masses of 0.60Mo, 0.78Mo, and 0.95Mo (W60GC1C, W78GC1C, and 

W95GC1C).  For comparison we present, in Table 4.4, the same modes calculated for 

the stratified models that include nuclear burning and Coulomb corrections to the 

equation of state (I60BC1Y).  Periods in the range observed in the pulsating PG1159 

stars correspond to roughly k  = 25 (for the 0.60Mo models) to k  = 51 (for the 

0.95Mo models) for l  = 1 modes.  From the local analysis for nonradial modes 

presented in Section 3.4 (see also Section 4.3 below) the period for a high-order mode 

scales as the square root of [ l ( l +1)] -1 ; to obtain periods of ~550 seconds for l =2, 

the order of a mode would have to increase by a factor of ~1.7.

At a given luminosity, the periods for the stratified model are uniformly about 

10% shorter than in the simple 0.60Mo pure 12C models for the same l  and k, even 

for models in which nuclear burning is an important luminosity source.  This result 

allows us to use the simpler carbon models to study the dependence of the pulsation 

properties on some of the gross physical characteristics of PWDs with the confidence 

that any conclusions drawn will also apply to the more realistic models. 

The period of a given mode increases with decreasing stellar mass at a given 

luminosity.  The mass dependence of the period, ∏, obtained using the periods of the 

k=35, l =1 mode from Tables 4.1-4.3, is of the form

d(ln Π)/dM = - B   , (4.1)

where M is the total stellar mass in solar units, and B is a number of order unity.  This 

relation will prove to be useful for the investigation of the effect of steady mass loss on 

the rate of change of the period (Chapter 5). Not surprisingly, B is a function of 

luminosity and is ~2.0 for L > 300Lo, ~1.7 for L ~ 100Lo, and ~ 1.4 for L < 30Lo.  

The decrease in the value of B with luminosity occurs because the central condensation 

becomes a very weak function of  stellar mass as complete degeneracy is approached.
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Table 4.1

Pulsation Periods for Sequence W60GC1C

                                                                               ∏ [seconds]

                                             ____________________________________________

                                                                         l  = 1                                           l  = 2
                                               _________________________________           _____

  #      Age [yr]    log(L/Lo)     k  = 1       k  = 10        k  = 25          k  = 35           k  = 35

==================   ==============================   ======

 41 1.91x103 3.150  55.310 243.870 559.042 767.028 448.050

 47 2.42x103 3.081  54.925 244.291 558.766 766.269 447.533

 53 2.99x103 3.002  54.615 245.038 559.210 766.346 447.526

 65 4.27x103 2.856  54.166 246.659 560.890 766.765 447.722

 73 6.39x103 2.705  53.811 248.455 563.545 768.713 448.969

 77 1.14x104 2.500  53.509 250.958 566.687 773.585 451.755

 82 2.19x104 2.273  53.467 253.991 570.594 778.182 454.330

 86 5.31x104 2.000  53.988 258.999 577.268 788.073 460.170

 91 1.07x105 1.776  55.059 264.246 584.741 799.446 466.837

 98 2.51x105 1.500  57.913 272.185 596.313 819.282 478.377

102 4.13x105 1.304  61.143 278.778 613.048 840.275 490.818

110 7.43x105 1.000  66.695 292.889 646.179 886.222 517.714
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 Table 4.2

Pulsation Periods for Sequence W78GC1C

                                                                             ∏ [seconds]

                                                    _____________________________________

                                                                       l  = 1                                    l  = 2

                                                    _________________________           ________

  #      Age [yr]      log(L/Lo)           k  = 1       k  = 10        k  = 35               k  = 39

====================        ======================       ========

 62 1.75x103 3.115 38.230 174.456 544.556 ...

 67 3.00x103 3.000 38.038 175.490 546.864 352.171

 73 5.93x103 2.853 37.719 176.729 546.850 352.864

 74 7.06x103 2.817 37.625  177.035 547.035 352.975

 78 1.21x104 2.707 37.276 177.870 547.109 353.301

 82 1.78x104 2.631 37.007 178.051 546.299 353.114

 85 3.25x104 2.516 36.657 178.383 544.907 351.940

 87 4.33x104 2.454 36.602 178.729 544.820 351.634

 93 8.62x104 2.252 37.450 181.527 550.399 356.316

 98 1.50x105 1.999 39.621 188.921 568.625 368.067

101 2.13x105 1.787 42.489 197.298 590.168 381.516

104 3.18x105 1.499 47.080 208.226 624.013 404.119

106 4.24x105 1.265 51.353 218.027 655.793 ...

108 5.62x105 1.015 56.488 230.857 693.908 ...
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Table 4.3

Pulsation Periods for Sequence W95GC1C

                                                                                 ∏ [seconds]

                                               ____________________________________________

                                                                          l  = 1                                        l  = 2   

                                               __________________________________      _______

  #      Age [yr]     log(L/Lo)    k  = 1        k  = 10       k  = 35          k  = 51          k  = 35

=================== =============================   ======

 63 -5.47x103 3.152 25.389 124.677 385.000 548.062 224.144

 67 -2.17x103 3.095 25.076 123.625 381.010 541.944 222.771

 73 3.38x103 2.993 24.903 123.346 378.255 538.948 221.151

 77 1.68x104 2.762 25.704 125.926 383.024 547.942 223.988

 82 3.93x104 2.454 27.877 131.042 395.562 567.515 231.331

 85 5.71x104 2.261 29.604 136.056 409.000 586.060 239.208

 87 7.14x104 2.128 31.179 140.206 420.416 602.266 245.959

 92 1.19x105 1.776 35.689 151.925 453.385 649.936 265.121

 96 1.73x105 1.478 40.289 162.206 484.738 695.433 283.592

 99 2.28x105 1.237 44.118 171.523 512.075 735.630 299.549

102 3.01x105 0.981 ... ... 543.886 ... 318.207

 
69



Table 4.4

Pulsation Periods for Sequence I60BC1Y

                                                                               ∏ [seconds]

                                              _____________________________________________

                                                                          l  = 1                                         l  = 2 

                                              _________________________________          _______

  #        Age [yr]   log(L/Lo)   k  = 1        k  = 10        k  = 25        k  = 35            k  = 35

==================   =============================    ======

  1 -2.13x103 3.208 50.313 225.729 522.301 720.414 419.746

  2 3.70x102 3.117 49.893 226.905 522.652 719.214 418.922

  3 2.38x103 3.031 49.607 228.336 522.052 718.821 418.722

  4 5.38x103 2.885 49.280 230.385 523.163 720.157 419.385

  6 9.38x103 2.693 49.088 232.066 526.517 723.132 ...

  8 1.34x104 2.535 49.103  232.685 528.855 726.934 423.142

  9 2.54x104 2.231 49.516 234.353 537.833 737.446 429.146

 10 4.04x104 2.009 50.100 237.818 544.291 745.760 434.115

 11 7.65x104 1.725 51.264 244.541 555.298 762.580 443.723

 12 1.27x105 1.499 52.562 251.052 567.598 775.269 450.885

 13 2.47x105 1.209 54.959 260.393 581.974 797.305 464.022

 14 3.97x105 0.988 57.444 267.371 594.833 817.135 475.127
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In Figure 4.1 we show representative radial (δr/r ) and tangential (δt/r ) 

displacements for k=25, l =1  in two 0.60Mo models from W60GC1C.  The 

tangential displacement, in terms of the Dziembowski variable y2, is

δt = g y 2 σ-2  (4.2)

where the normalization for the displacements is given in equation (3.29). This 

component of the displacement dominates the motion in the outer stellar regions.  In 

the high luminosity models with high central condensation, the maximum amplitude of 

the total displacement near the center is about 1/30th the displacement at the surface.  

As the model cools, the relative amplitude of surface displacement increases, and the 

tangential displacement grows relative to the radial displacement.  These effects reflect 

the approach to neutral stratification (A→0; see Section 3.4.2) and resulting decrease in 

the Brunt-Väisälä frequency in the degenerate cores of the models.  This "squeezes" 

the eigenfunctions out towards the surface.

4.3  Characteristic Mode Spacings

As is evident from inspection of Tables 4.1-4.4, the g-mode periods increase 

linearly with k  for a given model; that is, the period spacing between modes with 

consecutive values of k  is approximately a constant for a given value of l .  In this 

section, we derive an analytic expression for the constant period spacing of high-order 

g-modes of the same degree.  Also, we present an expression for the characteristic 

frequency spacing of the high order p-modes.  

In the Cowling approximation in the limit of higher k , the equations of 

adiabatic oscillations can be manipulated to give a dispersion relation for the radial 

wavenumber k r  as a function of the oscillation frequency and conditions of the 

equilibrium model (equation 3.30).  Within this description of the oscillations, the 

acoustic and Brunt-Väisälä frequencies act as the boundaries of two "potential wells" 

for the eigenfunctions.  We may in fact use a modified WKB analysis to estimate the 
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Figure 4.1 (a) and (b):

Radial (dashed line) and horizontal (solid line) displacement perturbations for the 

k =25, l =1 mode, normalized to the radial perturbation of the surface for the 

following models in the pure 12C PWD sequence W60GC1C:  (a) log(L/Lo)=3.15 

and (b) log(L/Lo)=1.50.
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eigenfrequencies of the system for the high-order modes in analogy with the solutions 

of the Schroedinger equation for quantum energy states of a given potential (Unno et 

al. 1979, §15; see also Park 1975, or any introdutory quantum mechanics textbook for 

a general description of the WKB approximation).  

4.3.1  Period Spacing of g-Modes

For the g-mode propagation region, we take the limit of equation (3.30) for 

small values of σ2 with respect to N2 and Sl
2 :

kr  ~ σ-1  [ l ( l +1)] 1/2  N/r (4.3)

where kr  is the local radial wavenumber and N is the Brunt-Väisälä frequency at radius 

r .  For the eigenfunctions to satisfy the appropriate boundary conditions, we must have 

that

a∫b k r  dr  = k π (4.4)

where k  is the number of nodes in the radial direction, and the integral is taken over the 

range of r  in which the mode may propagate.  For g-modes, this condition is that 

σ2<N2,Sl
2. With this constraint, we integrate both sides of equation (4.3) over the 

radius r  in the region where the above inequality holds, and obtain

∏ ~ k [ l ( l +1)] -1/2  ∏o (4.5)

(Toomre 1985) where

∏o ≡ 2 π2 [ a∫b(N/r)dr] -1   . (4.6)

In practice equation (4.5) does not give particularly accurate estimates of the 

periods of high-order g-modes.  However, the spacing between high-order modes of 

consecutive k is given to a high level of accuracy by equations (4.5) and (4.6); hence 

we refer to ∏o as the "characteristic period spacing" for the g-modes.  With this 
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definition of ∏o we can estimate the spacing of periods for any value of l   by simply 

dividing ∏o by [ l ( l +1)] 1/2 . The asymptotic period spacing determined in this way 

reproduces the mean period spacing, derived from full adiabatic calculations individual 

of high-order gravity modes (with l =1 and 2) to within about 3%.  In Table 4.5 we list 

the values of ∏o for several PNN-PWD models.  

Since ∏o can be evaluated using only equilibrium model quantities, it is a 

convenient parameter with which to compare the expected adiabatic pulsation properties 

of different models.  In pulsating stars with rich power spectra, where presumably 

larger k  modes are being observed, such a period spacing may be obtainable from 

observational data for direct comparison with the models.  In Chapter 7 we show how 

the observed periods in PG1159-035 may yield an l  identification by comparison with 

theoretical period spacings.

4.3.2 Frequency Spacing of p-Modes

The p-mode oscillation spectrum may also be represented by an asymptotic 

characteristic spacing, but uniform in frequency instead of period.  For p-modes with 

sufficiently high frequencies, the asymptotic analysis in Section 3.4 gave

kr  ~ σ c s-1  . (4.7)

Integrating both sides of equation (4.3) over the range of r  where p-modes are 

propagating (σ2>N2,Sl
2) we obtain

σ ~ k σo (4.8)

where

σo = π [ a' ∫b' cs-1 dr ] -1  . (4.9)

The value of σo, the characteristic frequency spacing, is related to the time needed for a 

sound wave to travel between successive reflections from the outer boundary.  This 
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Table 4.5

Characteristic Mode Spacings for DOV Models

 ∏o[s]         σo[rad s-1]

Sequence log (L/Lo)                    (g-modes)         (p-modes)

    __________         __________                 _________            __________

I60BC1Y 3.208 27.623 7.34x10-2

       " 2.535 27.904 1.46x10-1

       " 2.009 29.327 2.26x10-1

       " 1.499 29.905 2.48x10-1

       " 0.988 31.576 2.97x10-1

W60GC1C 3.150 28.556 7.20x10-2

       " 3.002 28.561 8.44x10-2

       " 2.500 28.950 1.25x10-1

       " 2.000 29.602 1.69x10-1

       " 1.500 30.825 2.24x10-1

       " 1.000 33.533 2.85x10-1

----------------------------------------------------------------------------------------------

W78GC1C 3.000 20.191 1.55x10-1

       " 2.707 20.288 1.93x10-1

       " 2.516 20.246 2.32x10-1

       " 1.999 21.248 3.66x10-1

       " 1.499 23.444 4.48x10-1

       " 1.015 26.163 5.10x10-1

W40GC1C 2.255 46.057 6.40x10-2

       "   1.996 46.313 7.65x10-2

       " 1.504 47.348 9.79x10-2

       " 1.256 48.071 1.09x10-1
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frequency spacing, observed in the solar 5-minute oscillations, has provided a very 

important constraint on models of the solar interior (Toomre 1985).

Recent seismological studies of nearby solar-type stars have been able to 

extract this characteristic frequency spacing from time-resolved studies of line profiles 

(Noyes et al. 1984, Guenther and Demarque 1985, Demarque et al. 1985).  The high-

order p-mode periods (∏< 10s) for the hot degenerates present a formidable challenge 

for current observing techniques.  There is no evidence for such variation in PNN-

PWD stars.  However, we present representative p-mode spacings in Table 4.5 in the 

hope that future observational techniques may be able to detect such modes if they are 

present.

4.4  Weight Functions in the DOV Models

The evolutionary transition from the centrally condensed planetary nebula 

nucleus to the white dwarf configuration is accompanied by a striking change in the 

region of period formation, as indicated by the character of the weight function (the 

integrand of the numerator of equation 3.36).  There is a narrow transition range in 

luminosity where the maximum of the weight function for high order modes moves 

from well inside the degenerate core (q~0.5) out to the outer envelope (q>0.98).  This 

is illustrated in Figure 4.2 for a k=25, l =1 mode (period of ~550 to 650s) followed 

through the evolution of the pure 12C 0.60Mo model (W60GC1C).  

At high luminosities this mode is uniformly weighted through most of the 

degenerate interior.  Figure 4.2(a) is comparable to Figure 1 of Schwank (1976) for the 

k=3, l =2 mode of an n=3 polytrope (intermediate central condensation).  As the model 

cools, the weight for the surface increases relative to the interior, as was anticipated by 

the discussion of Section 3.4.2.  Below a transition luminosity (100Lo for this 

sequence), the surface weight dominates.  The degeneracy boundary of the hot models 

is at q~0.85 (which moves slowly outwards with time) so that at high luminosity 

phases the adiabatic properties of the pulsations should reflect the conditions in the 

degenerate core.  After the transition from the more global
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Figure 4.2 (a)-(e):

Evolution of the weight function (numerator of equation [3.36]) as a function of 

fractional radius for the k=25, l =1 mode for the 0.60Mo pure 12C PWD sequence 

W60GC1C.  Luminosities are indicated within each panel.  While the weight 

functions were originally computed using finer zoning (see Section 3.5), the value 

of the weight function is plotted for the mass zoning of the input model; hence, near 

r/R =0.25, the curve is underresolved.
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contributions to envelope dominance of the weight function, the mode becomes 

increasingly affected by the conditions between the edge of the degenerate core and the 

surface.  We find this behavior of the weights to be relatively insensitive to the value of 

k  and l   for g-modes with k > 10 and l  = 1,2 in a given PWD model.

The oscillatory behavior of the weight functions in Figure 4.2 reflects their 

dependence on the eigenfunctions.  The overwhelming contribution to the weight in 

equation (3.36) is from the gravity wave term N(r) , as should be expected for a g-

mode.  At low luminosities the compressional term [C(r) ] also contributes to the 

weight in the envelope.  The transition of the maximum in the weight function from 

core to surface reflects the decrease in central condensation as well as evolutionary 

changes at fixed mass points (Schwank 1976).

The running integral of the weight function, from stellar center to a given 

fractional radius, is shown as a function of that fractional radius in Figure 4.3.  Such 

"leaf diagrams" show that, through the high luminosity phases, the period is determined 

primarily in the degenerate interior within q<0.9, and that the distribution of weight 

with mass is approximately constant there.  At these luminosities, the pulsation 

properties retain some similarities to those of the red giants (Schwank 1976) of which 

these models are descendants.  Below the transition luminosity (~100Lo) the surface 

has become important; the integrated weight remains low in the core and increases 

quickly with radius near the surface.  The pulsations have become white-dwarf-like in 

character.  Diagrams such as Figure 4.3 dramatically illustrate the transition from a 

PNN to a WD configuration, and may be used to define at what point in the H-R 

diagram a star may be considered a white dwarf. 

4.5  Adiabatic Periods in DBV Models

Curiously, as in the DOV stars, periods of the high-order g-modes in DBV 

models are representative of the periods of pulsation in the DBVs.  To represent the

observed periods of 500-1000s in the DBVs we consider the g-mode with k  =25, but 

now with l  =2.  The periods for this mode are given in Table 4.6.

 
80



Figure 4.3:

Running integral of the weight functions (see Figure 4.2) to a given fractional radius 

for the k=25, l =1  mode in the 0.60Mo pure 12C PWD sequence W60GC1C.  

From top to bottom, lines are log(L/Lo)=3.15, 3.00, 2.50, 2.00, 1.50, and 1.00.  The 

dotted lines join points at the indicated mass fraction.
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Table 4.6

Periods  for the k  = 25, l  = 2 Mode in DBV Models

                     ∏ [seconds]

                  ______________________________

        Effective Temperature (103K)

Sequence     30      25      20           
       =========          ==========================

W40GC1C   778.1   862.9   984.6

W60GC1C   648.5   723.4   841.2

W78GC1C   550.4   621.5   732.5

I60BC1Y   483.7   517.2   571.1

I60BI1Y   606.9   670.2   771.7
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Periods for this mode range from 484s at Te=30,000K to 571s at Te=20,000K 

for the stratified 0.60Mo model that contained Coulomb corrections (I60BC1Y).  The 

periods for the same mode in the 0.60Mo pure 12C model (W60GC1C) were 30-40% 

longer than in the stratified model.  As shown by Osaki and Hansen (1973) the periods 

of the g-modes are inversely proportional to the square-root of the specific heat.  Since 

the specific heat of the ions is inversely proportional to the mean atomic weight, then 

the periods of the g-modes are proportional to the square-root of the mean atomic 

weight in the region of importance to setting the period.  Thus the shorter periods in the 

stratified models reflect the fact that the mean atomic weight in the region of period 

formation of the stratified models is smaller.  The characteristic period spacing of the 

g-modes (Table 4.7) shows the same dependence on composition as the periods 

themselves; observable quantities such as periods and period spacings are therefore 

sensitive probes of the envelope structure and composition of the DBVs.

Inclusion of non-ideal interactions in the interior equation of state for the DBV 

models results in a smaller radius at a given effective temperature acompared with 

models constructed using an ideal gas equation of state.  This effect leads to periods 

(for a given mode) that are roughly 25% shorter for the I60BC1Y sequence (with 

Coulomb interactions) than for I60BI1Y (ideal gas) despite otherwise identical 

structural properties.
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Table 4.7

Characteristic Mode Spacings for DBV Models

   Te= 30,000K       Te=25,000K      Te= 20,000K    
______________ _____________ _____________

Sequence σo[Hz]  ∏o[s] σo[Hz]  ∏o[s] σo[Hz]  ∏o[s]

========    =============     ============    ============

W40GC1C 0.208  69.58 0.224  76.81 0.239  87.03

W60GC1C 0.418  57.68 0.432  63.97 0.482  73.88

I60BC1Y 0.440  43.46 0.457  46.76 0.475  51.25

I60BI1Y 0.388  54.57 0.402  60.43 0.419  71.03   
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CHAPTER 5

EVOLUTION OF THE ADIABATIC PULSATION PROPERTIES

5.1  Introduction

A remarkable property of the pulsating degenerates is the coherence of some 

of their pulsation periods.  Some ZZ Ceti variables, for example, display modes for 

which upper limits on |d(ln∏)/dt| are of order 10-16s-1 (Kepler 1984, Kepler et al. 

1981), placing them among the most stable astrophysical clocks in the sky.  In some of 

these, apparent incoherencies actually result from beating between modes with very 

closely spaced periods, perhaps caused by very slow rotation rates (Robinson, Nather 

and McGraw 1980, O'Donoghue and Warner 1982, Kepler et al. 1983).  Other modes 

in pulsating degenerates appear very unstable, with photometric behavior that may 

result from as yet unresolved modes that are very closely spaced in frequency.

The DOV star PG1159-035 shows both kinds of modes.  In the detailed study 

by Winget et al.(1985) only the 516s period appeared stable in both period and 

amplitude over the entire baseline of observations.  This stability, in turn, enabled 

Winget et al. to measure the rate of change of the 516s period.  The relatively large 

value of d(ln∏)/dt, (-2.3±0.2)x10-14s-1, results from the rapid evolution of the hot 

degenerate.  Measurement of such a small effect can nevertheless be made with 

confidence: consider two clocks, both initially keeping perfect time.  Clock P speeds up 

at the same rate as PG1159-035, while Clock A continues to keep perfect time.  After 

2.25 years, Clock P would be running only 0.15s per day fast.  A much more apparent 

consequence of the speeding up of Clock P is that it would be 60s ahead of the 

reference clock, Clock A.  Similarly, we measure d∏/dt in pulsating stars not by 

looking for period changes themselves, but by measuring accumulated phase shifts 

(early/delayed maxima) over many pulsation cycles.
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In this chapter we will show the rates of period change found for the PNN-

PWD models.  With the insight gained from the theoretical models, we will show such 

measurements of rates of period change for stable pulsation modes may be used to 

deduce the physical properties of the pulsating degenerates.  In Section 5.2, we discuss 

how we calculate the rates of change of the oscillation periods.  We present the rates of 

period change for the PNN and PWD models in Section 5.2, and show how the rate of 

period change acts as a probe of the cooling and contraction rates within the stellar 

interior.  We demonstrate how d(ln∏)/dt depends on stellar mass, composition, and 

equation of state.  In the following section, we show how energy loss by neutrino 

emission affects d(ln∏)/dt.  The observed rate of period change can be affected by the 

rotational spin-up of a contracting star as it tries to conserve angular momentum; in 

Section 5.5 we quantitatively demonstrate this effect on d(ln∏)/dt.   In Section 5.6 we 

examine the DBV models, and show how d(ln∏)/dt will provide a useful tool for 

understanding these stars.  Finally, we consider other physical effects that may 

contribute to the observed rates of period change in Section 5.7.

5.2  Calculation of Rates of Period Change

In the pulsation calculations discussed in Chapters 3 and 4, we obtained the 

adiabatic oscillation periods of the PNN-PWD models.  The purpose of this section is 

to show how we obtain rates of period change using these periods and the evolutionary 

nature of the models.

When we derived the linearized perturbation equations for nonradial 

oscillations in Section 3.2, we assumed thermal balance, dso/dt=0 , everywhere.  This 

step is an apparent contradiction of the essential property of the evolutionary models:  

the structure of these models is not strictly static, but changes in response to the 

changing thermal conditions within the model.  These structural changes result from 

the slight imbalance among thermal processes such as nuclear burning, contraction, and 

heat loss by neutrino and photon emission.  By setting dso/dt=0 , we are ignoring the 

evolutionary origin of the model and assuming that it is a static configuration.
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The effect of thermal imbalance on the adiabatic oscillation frequencies is of 

the order of the ratio of the oscillation period to the time scale for structural changes 

(Cox 1980, §19.4). Structural changes which result from thermal processes occur on 

the thermal time scale τth  (as defined in equation 2.1) for the whole star.  The thermal 

time scale for PWD models is typically greater than 1012-13 seconds, and is more than 

10 orders of magnitude longer than the g-mode oscillation periods given in Chapter 4.  

Hence, departures from thermal balance would affect the adiabatic oscillation periods 

by only about one part in 1010.

By ignoring the evolutionary term ds o/dt  in the oscillation equations, we 

obtain the adiabatic periods quite accurately, although we have lost information as to the 

time dependence of the periods that is implicitly contained in the evolutionary model.  

In an effort to retain this information, several authors have attempted to examine the 

effects of thermal imbalance of the pulsation properties of stellar models, but this 

remains a thorny problem (for a review, see Cox 1980, §19.4).  These procedures have 

not as yet been applied to "real" evolutionary models.  However, from the above 

discussion, we do not need to worry about thermal imbalance in calculating the 

adiabatic periods for our models, and so we can take advantage of the evolutionary 

nature of our models and calculate d∏/dt.  In order to compute d∏/dt for a given mode, 

we calculate the pulsation period of that mode for models in an evolutionary sequence, 

difference the calculated periods for consecutive evolutionary models [∆log(age)<0.1] 

and divide by the age difference of the models.  

An observed secular period change results not only from evolutionary changes 

in the "inertial" adiabatic pulsation period of the star, but from changes in all physical 

processes that contribute to the observed pulsation period.  In order to directly compare 

with the observed rates of period change, we must include additional effects, such as 

rotation and mass loss.  We will examine the contribution of these effects in Sections 

5.5 and 5.7.
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5.3  Rates of Period Change for DOV Models

5.3.1  Pure 12C Models

In Tables 5.1-5.3 are the rates of change of the periods with time [d(ln∏)/dt] 

for the pure 12C PWD models.  We also show the values of d(ln∏)/dt as functions of 

luminosity for these sequences in Figure 5.1.  We find the adiabatic periods of the high 

order modes to be increasing (positive d∏/dt) in all models below log(L/Lo)=2.5.  

When the luminosity of the model is above the PNN-PWD transition luminosity of 

100Lo (see Section 4.3), the timescale for period change [(dln∏/dt)-1] is long 

compared to e-folding times for surface variables such as luminosity and effective 

temperature.  This is because the period is established throughout the interior of the 

model, where the cooling and contraction timescales correspond to the thermal 

timescale of the whole star, ~106 years.

Winget, Hansen and Van Horn (1983, hereafter WHVH) have shown that the 

expression for d(ln∏)/dt is of the form: 

d(ln ∏)/dt = -a d(lnT)/dt + b d(lnR)/dt   (5.1)

where T is the temperature in the region of maximum weight and R is the stellar radius.  

Cooling tends to decrease the Brunt-Väisälä frequency, and therefore increase the 

period of g-modes, as the core becomes more degenerate.  Contraction effects lead to 

decreasing periods with the resulting general increase in sound speed (see Section 3.4).  

The factors a and b in equation (5.1) are of order unity and are affected by properties 

such as the temperature dependence of the specific heats, the amount of mass 

contributing to setting the period, local neutrino energy losses, and other effects such as 

rotation and nonadiabaticity.  We can define a parameter, s , as the ratio of the 

contraction rate to the cooling rate:

s d(lnT)/dt = d(lnR)/dt (5.2)
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Table 5.1

Rates of Period Change for Sequence W60GC1C

                                          d(ln∏)/dt [10-14 s-1]

                                                _________________________________________

                                                                          l  = 1                                     l  = 2 

                                                _______________________________        ______

  #      Age [yr]    log(L/Lo)      k  = 1        k  = 10      k  = 25      k  = 35         k  = 35

==================   ===========================   ======

 41 1.91x103 3.150  -48.8 5.50 -11.5 -13.6 -10.4

 47 2.42x103 3.081  -37.8 13.7 0.47 -2.99 -3.83

 53 2.99x103 3.002 -27.6 17.6 5.62 0.84 0.32

 65 4.27x103 2.856 -15.1 14.3 8.08 2.21 2.60

 73 6.39x103 2.705  -6.69 8.59 5.66 4.39 4.05

 77 1.14x104 2.500  -1.71 4.97 2.42 3.03 2.86

 82 2.19x104 2.273  0.48 2.86 1.73 1.50 1.53

 86 5.31x104 2.000 1.13 1.56 1.01 1.02 1.05

 91 1.07x105 1.776  1.15 0.94 0.59 0.71 0.71

 98 2.51x105 1.500  1.08 0.54 0.50 0.51 0.52

102 4.13x105 1.304  0.99 0.47 0.53 0.50 0.51

110 7.43x105 1.000  0.75 0.45 0.46 0.44 0.44
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Table 5.2

Rates of Period Change for Sequence W78GC1C

                                    d(ln∏)/dt [10-14 s-1]

                                                 _________________________________

                                                                        l  = 1                           l  = 2 

                                                 ________________________       ______

  #      Age [yr]    log(L/Lo)      k  = 1        k  = 10      k  = 35          k  = 39

=================== =====================  ======

 62 1.75x103 3.115  -14.9 19.6 9.83 ...

 67 3.00x103 3.000  -11.1 11.6 4.06 4.15

 73 5.93x103 2.853 -7.44 5.16 1.03 0.99

 74 7.06x103 2.817 -6.72 4.39 0.86 0.81

 78 1.21x104 2.707  -4.96 1.26 -0.53 0.03

 82 1.78x104 2.631  -3.20 0.53 -0.78 -0.51

 85 3.25x104 2.516  -0.87 0.28 -0.15 -0.49

 87 4.33x104 2.454 0.17 0.65 0.08 0.10

 93 8.62x104 2.252  2.32 1.56 1.20 1.34

 98 1.50x105 1.999  3.14 2.20 1.85 1.77

101 2.13x105 1.787  3.35 1.95 1.80 1.78

104 3.18x105 1.499  2.82 1.49 1.57 1.57

106 4.24x105 1.265 2.40 1.34 1.39 ...

108 5.62x105 1.015 1.95 1.17 1.15 ...
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Table 5.3

Rates of Period Change for Sequence W95GC1C

                                          d(ln∏)/dt [10-14 s-1]

                                                _________________________________________

                                                                          l  = 1                                     l  = 2 

                                                _______________________________        ______

  #      Age [yr]    log(L/Lo)      k  = 1        k  = 10      k  = 35      k  = 51          k  = 35

==================  ===========================    ======

 63 -5.47x103 3.152  -14.8 -10.6 -12.1 -13.6 -12.3

 67 -2.17x103 3.095  -9.06 -5.68 -7.90 -8.05 -8.02

 73 3.38x103 2.993 -0.45 0.61 -1.96 -0.99 -1.97

 77 1.68x104 2.762 9.18 5.21 3.64 4.36 3.67

 82 3.93x104 2.454  11.0 6.27 5.40 5.42 5.41

 85 5.71x104 2.261  11.2 6.67 6.04 5.91 6.08

 87 7.14x104 2.128  10.8 6.31 5.82 5.79 5.86

 92 1.19x105 1.776 7.99 4.54 4.44 4.48 4.44

 96 1.73x105 1.478  6.06 3.49 3.49 3.56 3.50

 99 2.28x105 1.237  4.77 2.93 2.90 2.95 2.90

102 3.01x105 0.981  ... ... 2.33 ... 2.33
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Figure 5.1:

The relative rate of period change, d(ln∏)/dt, as a function of luminosity for the 

k=35, l =1 mode in the 0.60Mo (solid curve), 0.78Mo (dotted curve), and 0.95Mo 

(dashed curve) pure 12C PWD sequences.
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Using this ratio, we rewrite equation (5.1) as:

d(ln ∏)/dt = (-a+bs) d(lnT)/dt (5.3)

At high luminosities, where contraction dominates (s>1 ), the rate of period decrease is 

approximated by the rate of radius decrease.  When cooling dominates (s<1 ) then the 

rate of period increase is of the same order as the cooling rate.  When the competing 

effects of cooling and contraction are in approximate balance (s~1 ), then the 

magnitude of d(ln∏)/dt can be very small or zero, corresponding to a long timescale for 

period change.  The luminosity where this occurs in a given model depends on the 

combination of factors (all of order unity) in equation (5.3) and is accompanied by a 

sign change in d(ln∏)/dt.  We note in passing that observational limits to the rate of 

period change can be as valuable as measurements in this regime.

At very high luminosities (log(L/Lo)>3.0) in the 0.95Mo and 0.60Mo models, 

global contraction effects dominate.  Timescales for radius decrease in these models are 

much shorter than cooling timescales in the zone of large weight.  The decreasing 

periods of these models reflects this condition.  Following this phase of rapid 

contraction, the further radius changes are tempered by the stiffening of the equation of 

state and these models approach the constant radius phase of evolution.  This is 

reflected in the subsequent increase in period with time.  The behavior of d(ln∏)/dt as a 

function of luminosity is presented in Figure 5.1 for the k=35, l =1 mode in three 

sequences W60GC1C, W78GC1C and W95GC1C. 

There is a range of luminosities in the 0.78Mo  sequence that yields negative 

values for d∏/dt.  This phase occurs just prior to the broad kink in the evolutionary 

track for this model (see Figure 2.2).  This effect is related to the diffusion of residual 

thermal energy from the fossil burning shell.  The burning shell imposes a steep 

temperature gradient near the surface, providing radiative support for the overlying 

mass.  As the excess thermal energy diffuses into regions with a very short thermal 

timescale, the excess support in this zone dissipates.  The radius of the regions of the 

star below the temperature excess then decreases as the new,  more  shallow 

temperature gradient becomes established.  This transition is an artifact of the 
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somewhat artificial manner in which the starting model was produced, but is seen in 

pure 0.78Mo 12C model evolved with WDEC (W78GC1C) and in the further 

evolution of the stratified 0.78Mo model (P78GI1Y) evolved with the modified 

Paczynski code.  Hence, although it is a detail of the model, the physical effect is real.  

If the zone of excess thermal energy moves through a region of the star important in 

setting the oscillation frequency, a negative d(ln∏)/dt could result from the local radius 

adjustment.

We can make use of the delay between the onset of negative d(ln∏)/dt and the 

completion of the kink in the evolutionary track to estimate the depth at which the 

pulsation period is determined.  The stellar radius begins to decrease more rapidly at 

log(L/Lo)~2.50.  Negative d(ln∏)/dt appears at log(L/Lo)~2.75.  The difference in time 

between the two models, ~3x104 yr, should be comparable to the thermal timescale of 

the region where the period is determined in the model.  Using these values, we find 

that the delay corresponds to a depth of 0.08Mo below the surface, implying that the 

period is determined around the position of the degeneracy boundary.  This is in 

qualitative agreement with the weight function for 0.78Mo models at log(L/Lo) of 

about 2.6, indicating that our interpretation of the negative d(ln∏)/dt is self-consistent.

The timetable of outward diffusion of thermal energy of the burning shell is 

sensitive to the treatment of the cessation of nuclear burning in the PWD phase. The 

transformation from a temperature profile for nuclear burning to one of gravitational 

contraction is more gradual in the more realistic models than in the simple models 

presented in this subsection.  Hence any of the readjustments in radius such as those 

that produce negative values of d(ln∏)/dt are less abrupt in more realistic models.

The detailed behavior of d(ln∏)/dt as a function of time is not well determined 

for the high luminosity (log[L/Lo]>2.7), rapidly evolving models where the difference 

between periods in successive models is comparable to our estimates of possible period 

errors, as in Section 3.6.  Hence, error bars of approximately ±1x10-14 should rightly 

be attached to d(ln∏)/dt above log(L/Lo) of ~2.7.
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Periods are increasing for all models when log(L/Lo)≤2.5.  Here, d(ln∏)/dt is 

far more reliable than at higher luminosities; period changes between successive 

models are much greater than the expected internal errors.  The timescales for period 

change (τ=[dln∏/dt]-1) ranged from 8x105 to 20x105 years at these lower 

luminosities,  varying inversely with mass at a given luminosity for a given mode.

In Section 3.4.2 the relationship of the time dependence of the oscillation 

period to the evolutionary changes in the Brunt-Väisälä frequency was discussed with 

reference to propagation diagrams.  This relationship is illustrated in Figure 5.2.  The 

k =35, l  =1 mode for the 0.95Mo model has d∏/dt=-5x10-11s/s in Figure 5.2(a); 

d∏/dt=+2x10-11 s/s in Figure 5.2b.  The integrated weight function for this mode is 

indicated with arrows above the N2 curves in Figure 5.2.  The bulk of the eigenvalue is 

determined before the zone of increasing N2 in Figure 5.2(b).  Contraction is important 

where N2 is increasing in the nondegenerate envelope.  But in the degenerate core, 

cooling dominates and N2 decreases.  The overall positive value of d∏/dt for the model 

in Figure 5.2(b) means that the cooling core dominates the contracting envelope in 

establishing d∏/dt as well as ∏.

5.3.2 The Stratified DOV Sequences

The rates of period change for the compositionally stratified 0.60Mo sequence 

I60BC1Y are presented in Table 5.4, and are compared with the pure 12C model in 

Figure 5.3.  Since this model was evolved directly from the AGB, the high luminosity 

models (L > 1000Lo) give more physically consistent values for d(ln∏)/dt at these high 

luminosities than the carbon models.  Below log(L/Lo)=2.6, values of d(ln∏)/dt are 

systematically larger in the compositionally stratified sequence than in the pure 12C 

model with neutrinos included;  in the luminosity range from log(L/Lo)=2.6 to 

log(L/Lo)=1.0 the period increases about twice as fast.  The difference in d(ln∏)/dt 

reflects the difference in composition of the region of maximum weight: the stratified 

models are about half carbon and half oxygen in the core.  As we will show in Section 

5.6.2 and in the Appendix, the conductive cooling rate for degenerate stellar material is 

proportional to the mean atomic weight.  The stratified models have a higher mean 

atomic weight in the core than the pure 12C models, and therefore cool more quickly.
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Figure 5.2 (a),(b):

Expanded propagation diagrams for some 0.95Mo models. In panel (a) we have N2 

for log(L/Lo)=3.15 (solid line), and N2 for log(L/Lo)=3.10 (short-dashed line).  In 

(b), we have N2 for log(L/Lo)=2.45 (solid line), and N2 for log(L/Lo)=2.13 (short-

dashed line).  The long-dashed line is Sl 2 for l =1 in the more luminous model.  

The value of the integrated weight function is indicated with arrows above the N2 

curves.
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Table 5.4

Rates of Period Change for Sequence I60BC1Y

                                          d(ln∏)/dt [10-14 s-1]

                                                _________________________________________

                                                                          l  = 1                                     l  = 2 

                                                _______________________________        ______

 #       Age [yr]    log(L/Lo)      k  = 1        k  = 10      k  = 25      k  = 35          k  = 35

==================  ============================  =======

 1 -2.13e+03 3.208  -11.4 4.85 2.22 -2.75 -3.38

 2 3.70e+02 3.117  -9.82 8.30 -0.63 -1.47 -1.60

 3 2.38e+03 3.031 -8.30 9.75 -0.42 0.18 0.15

 4 5.38e+03 2.885 -5.31 7.93 3.87 2.52 2.27

 6 9.38e+03 2.693  -1.13 3.22 3.35 3.70 ...

 8 1.34e+04 2.535  1.02 1.91 3.87 4.19 4.09

 9 2.54e+04 2.231  2.36 2.58 3.33 2.96 2.97

10 4.04e+04 2.009 2.27 2.81 2.19 2.19 2.21

11 7.65e+04 1.725  1.78 2.01 1.55 1.45 1.42

12 1.27e+05 1.499  1.40 1.36 1.07 0.91 0.90

13 2.47e+05 1.209  1.04 0.73 0.55 0.61 0.61

14 3.97e+05 0.988  0.84 0.50 0.41 0.47 0.45
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Figure 5.3:

Relative rate of period change as a function of luminosity for the k=35, l =1 g-mode 

in the 0.60Mo stratified PWD sequence with a helium envelope (I60BC1Y, dashed 

line) and for the sequence with a pure 12C compositon (W60GC1C, solid line).
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The rates of period change for the 0.60Mo models described above appear to 

hold for the general class of PNN-PWD models.  The major structural difference 

between the various stratified sequences with nuclear burning and the simpler 

homogeneous 12C models is in their envelope structure.  For high luminosity models, 

the period is largely determined in the interior of the star, below any nuclear shell 

sources.  Therefore, at luminosities above the PNN-WD transition luminosity at 

100Lo, the qualitative features of the pulsation properties of the high-order modes for 

the three sequences reflect the basic similarities of their degenerate cores, with minor 

differences attributable to differences in core composition.  By the time the models cool 

below the transition luminosity, where the portions of the star near the surface begin to 

dominate the weight function, these differences in envelope structure begin to diminish 

as residual nuclear burning dies away.  Hence, the pulsation properties will remain 

somewhat similar even below the transition luminosity.  Therefore we can conclude, 

with a measure of confidence, that the pulsation properties presented herein are 

representative of the entire class of theoretical PWD models.

5.4  Neutrino Emission and d(ln∏)/dt

At luminosities of interest for the DOV stars, the values of d(ln∏)/dt for the 

0.60Mo 12C sequences with reduced neutrino emission (W60GC0C [no neutrino 

emission] and W60GC2C [neutrino emission cut by a factor of 2]) are much smaller 

than in the models that include neutrinos.  In Figure 5.4, we show the rate of period 

change as a function of luminosity for the sequences with varying neutrino emission 

rates, and we tabulate the values of d(ln∏)/dt in Table 5.5.  At the luminosity of 

PG1159-035, ~100Lo, d(ln∏)/dt for the l  = 1, k  = 25 mode is +2.2x10-15s-1 for the 

sequence with no neutrinos.  This is a factor of five smaller than in the 0.60Mo 12C 

model that includes neutrinos.  For the sequence with neutrinos cut by a factor of two, 

d(ln∏)/dt is +4.7x10-15s-1, or roughly a factor of two smaller than in the models that 

include neutrinos.  

The dependence of d(ln∏)/dt on the neutrino rates is a simple consequence of 

the slower rate of cooling of the core in models where neutrino emission has been
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Figure 5.4:

Relative rate of period change as a function of luminosity, for the k=25, l =1 mode, 

in 0.60Mo pure 12C PWD sequences differing in the rate of neutrino emission.  

The short-dashed line is for a sequence with no neutrino emission (W60GC0C), 

and the dashed line had neutrino emission reduced by a factor of 2 from the rates of 

Beaudet, Petrosian and Salpeter (1967) (W60GC2C).  For comparison, we also 

show the curve for a sequence that included these standard neutrino emission rates 

(W60GC1C).
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Table 5.5    

d(ln∏)/dt for Different Neutrino Emission Rates (0.60Mo, l =1, k=25)

                                                  εν=BPS               εν=1/2 BPS                  εν=0

                    ==========   ==========    ==========

 log(L/Lo)=2.75

Age [yr] 5.76x103 6.43x103 3.42x103

Period [s] 563.1 579.6 692.9

d(ln∏)/dt [s-1] 6.38x10-14 3.44x10-14 4.05x10-13

 log(L/Lo)=2.50

Age [yr] 1.14x104 1.34x104 7.90x103

Period [s] 566.7 583.4 698.6

d(ln∏)/dt [s-1] 2.42x10-14 2.17x10-14 3.80x10-14

 log(L/Lo)=2.00

Age [yr] 5.31x104 6.54x104 6.40x104

Period [s] 577.3 590.4 705.7

d(ln∏)/dt [s-1] 1.01x10-14 4.65x10-15 2.23x10-15

 log(L/Lo)=1.75

Age [yr] 1.20x105 1.75x105 1.92x105

Period [s] 585.8 595.6 707.7

d(ln∏)/dt [s-1] 5.82x10-15 1.89x10-15 6.63x10-16

 log(L/Lo)=1.50

Age [yr] 2.51x105 3.77x105 5.16x105

Period [s] 596.3 601.1 713.6

d(ln∏)/dt [s-1] 4.96x10-15 1.59x10-15 4.64x10-16
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reduced.  At and below luminosities appropriate to PG1159, d(ln∏)/dt is roughly 

proportional to the rate of neutrino energy losses.  However, for models with no 

neutrino emission, d(ln∏)/dt has a minimum value that depends only on the photon 

cooling rate.  Above ~100Lo d(ln∏)/dt shows the effects of the different prior 

evolutionary histories of the models.

It is very important to treat the effects of neutrinos self-consistently by 

evolving with the reduced rates from the base of the AGB for the reasons discussed in 

Section 3.3.2.  The thermal structure of a star on the AGB is very sensitive to the rate 

of neutrino emission: for example, the AGB sequences with reduced neutrino emission 

have burning shells that are slightly farther out and narrower in mass than in the 

standard AGB model at a given luminosity.  The evolutionary differences produce 

qualitatively different temperature profiles in the resulting PNN models.  This 

dependence on prior evolution results in the nonlinear dependence of d(ln∏)/dt on the 

rate of neutrino emission in the more luminous PNN models (log[L/Lo]> 2.5). In those 

models, differences in the residual thermal structure of the core remain significant, and 

are reflected in the values of d(ln∏)/dt.  When the models cool to below log(L/Lo)~2.5, 

the global cooling effects track the neutrino emission rates more closely, as neutrinos 

begin to dominate the cooling.

5.5  Effects of Spin-up and Rotational Splitting

As a star contracts and its rotational moment of inertia decreases, it will rotate 

faster to conserve angular momentum. This rotational spin-up can lead to a change in 

the rotational splitting of observed nonradial g-modes periods.  In this section, we 

calculate, in the observer's frame, the rate of period change for 0.60Mo models in the 

presence of slow rotation.  Differentiating the equation for rotational splitting in the 

presence of slow uniform rotation (equation 3.42) with respect to time gives:

 d σobs      d σo       dΩ                dC
       _____   =  ____  - m  __ (1-C) + m Ω  __ (5.4)
        dt       dt       dt              dt
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where the symbols are as defined in Chapter 3, and we abbreviate Crot  as C.  If we 

assume that the total angular momentum J  of the star is conserved and that there is no 

redistribution of angular momentum within the star, then

dJ/dt = d(I Ω)/dt = 0  , (5.5)

where I  is the rotational moment of inertia of the star which, like Ω, may change with 

time.  Using this equation and assuming that σobs ~ σo we can rewrite equation 5.4 

in terms of periods and their time derivatives as

d(ln ∏obs )   d(ln ∏o)       ∏o         d(lnI)   dC
_________ = ________ - m ____ [ (1-C) ______ + ___ ]  (5.6) 
   dt          dt        ∏rot           dt     dt

where ∏o is the pulsation period for the case of uniform rotation.  

As the star evolves and cools, it will contract and become less centrally 

condensed; the rate of decrease in the moment of inertia is proportional to the 

contraction rate.  In the early phases of PWD evolution, when radial contraction is 

significant, rotational spin up can produce large changes in the observed rate of period 

change for modes with m≠0.  Prograde modes (m <0) will have reduced values of 

d(ln∏obs)/dt compared with the nonrotating value, whereas retrograde (m>0) modes 

will increase d(ln∏obs)/dt.  Modes with m=0 are unaffected by slow rotation.  We also 

note that the effect of rotation on d(ln∏obs)/dt decreases with increasing rotation 

period.

For rotational splitting in models undergoing differential rotation, we 

differentiate equation (3.44) and transform frequencies to periods, and find

d(ln ∏obs )   d(ln ∏o)      ∏o     d(C+C 1)
_________  = ________  - m ____   [ _______  
   dt          dt        ∏rot       dt   

                                          d(ln Ωo)
                               - (1-C-C 1) _______ ]  (5.7)
                                            dt

 
108



where, now, ∏rot  is the rotation period at the poles.  To calculate the rate of period 

change self-consistently for a sequence of models which conserves angular momentum, 

we desire an expression for d(ln Ωo)/dt  in terms of the structure of the equilibrium 

model.  For this purpose, we take the limit, as ϖ goes to zero, of the Ostriker and 

Bodenheimer rotation law in the form as presented in Hansen, Cox and Van Horn 

(1977) to obtain

Ωo = 1.1788 J/(MR 2) f (5.8)

where

f = M -1 R-2  0∫M dmr /r 2 (5.9)

and mr  is the mass within a sphere of radius r .  With this expression for Ωo  in 

equation 5.7 we finally obtain

d(ln ∏obs )   d(ln ∏o)      ∏o    d(C-C 1)
_________  = ________  - m ____  [ ________
    dt         dt        ∏rot      dt    

                                 d(lnf)     d(lnR)
                      -(1-C-C 1) ( ______ -2 ______ )]
                                   dt        dt

(5.10)

as the desired expression for d(ln ∏obs )/dt  for models with differential rotation.

We have calculated values of d(ln ∏obs )/dt  for the 0.60Mo, pure 12C 

evolutionary sequence W60GC1C.  The modes explicitly considered here are the k=35 

modes.  Table 5.6 gives the values of the rotation coefficients (C and C1) and  the 

various structure quantities used in the calculation of rotational splitting for the l =2, 

k=35  mode.  The quantities in Table 5.6 were numerically differenced to yield the time 

derivatives found in equations (5.6) and (5.10).  Figure 5.5 illustrates the rates of 
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Table 5.6

Rotational Splitting Parameters for

Pure 12C 0.60Mo PWD Models (Sequence W60GC1C)

__________________________________________________________________

 Age                            ∏           R               I
[103y]    log(L/Lo)     [s]        [cm]    [1050gcm2]     C         C1(1)   C1(2)       f
=========================================================
  
 2.99         3.002     447.53   9.403        3.1290     0.1640    0.2860  0.2866    53.44
  
 4.27         2.856     447.72   9.366        3.0708     0.1645    0.2750  0.2755    45.27
 
 6.39         2.705     448.97   9.332        3.0127     0.1649    0.2541  0.2546    38.89
 
 11.4         2.500     451.76   9.290        2.9315     0.1652    0.2403  0.2407    32.36

 21.9         2.273     454.33   9.250        2.8378     0.1654    0.2254  0.2258    27.23

 53.1         2.000     460.17   9.203        2.6955     0.1656    0.1969  0.1972    22.55
  
 107          1.776     466.84   9.168        2.5584     0.1657    0.1794  0.1797    19.76

 251          1.500     478.38   9.122        2.3299     0.1658    0.1625  0.1627    17.02
 
 413          1.304     490.82   9.092        2.1780     0.1658    0.1455  0.1456    15.54
 
 743          1.000     517.71   9.054        2.0071     0.1657    0.1293  0.1294    13.86
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period change as a function of luminosity for this mode, for a rotation period that was 

initially 5 times the pulsation period.  For the model at log(L/Lo)=2.27, Figure 5.6 

shows the dependence  of d(ln ∏obs )/dt  on the rotation rate for various values of 

m  and l .

In consideration of the observed negative value of d(ln∏)/dt for PG1159-035, 

we have plotted the theoretical value of d(ln ∏obs )/dt  for negative values of m.  

Modes with positive values of m would show a larger positive value of 

d(ln ∏obs )/dt  than the nonrotating value.  It is encouraging to note that full 

nonadiabatic calculations that implicitly include slow rotation seem to indicate that 

modes with negative m are slightly more unstable than those with positive m (Carroll 

and Hansen 1982; Hansen, Cox and Carroll 1978).

Figure 5.5 shows that, as expected, high luminosity models show large 

negative values of d(ln ∏obs )/dt , in prograde modes, resulting from the spin-up 

from contraction.  As the model approaches the constant radius phase, the rotational 

contribution to d(ln ∏obs )/dt  decreases.  At luminosities appropriate to PG1159-

035 (L~100Lo), rotation periods of a few thousand seconds in modes with pulsation 

periods of about 500 seconds produce rates of period change that are consistent with 

observation.  For slower rotation rates, the contribution of rotation to 

d(ln ∏obs )/dt  for modes with m ≠0 is still significant.

Also indicated in Figures 5.5 and 5.6 is the value of d(ln ∏obs )/dt  for 

differential rotation.  At luminosities below about 300Lo, the difference in 

d(ln ∏obs )/dt  between the two rotation laws is small.  Differential rotation slightly 

reduces the effect of rotation on d(ln ∏obs )/dt , compared with uniform rotation, in 

this luminosity range.  This modification of d(ln ∏obs )/dt  tends to increase with 

l ; in general, however, the period change due to rotational spin-up is not very sensitive 

to the form of the rotation law.  We note that although these rotational splitting 

calculations originally assumed slow rotation (∏<<∏rot ), this condition is not 

entirely satisfied with the larger values of ∏/ ∏rot  considered in Figure 5.6, although 

the results may be taken as indicative of the effect of rotation.
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Figure 5.5:

Relative rates of period change for k=35 g-modes in the 0.60Mo model.  The 

dashed line represents d(ln ∏obs )/dt  in the absence of rotation (or m=0 with 

slow rotation).  The solid lines show d(ln∏obs)/dt for the case of uniform rotation 

with, from top to bottom:  l =2, m=-1; l =2, m=-2 ; and l =3, m=-3 .  The 

dotted lines show the evolution of d(ln ∏obs )/dt  for the differential rotation law 

described in the text for the same sequence of l  and m.  The initial value of 

∏o/ ∏rot  is 0.20 at log (L/Lo)=3.0; the ratio increases to 0.33 (uniform rotation) 

and 0.26 (differential rotation) at log(L/Lo)=1.0 as a result of the evolutionary 

increase in pulsation period and decrease in rotation period.
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Figure 5.6:

Dependence of d(ln ∏obs )/dt  on rotation rate for the log(L/Lo)=2.26 pure 12C 

model in sequence W60GC1C.  The horizontal dashed line gives d(ln ∏obs )/dt  

for the case of no rotation (or m=0 with slow rotation).  Solid lines are for the case 

of uniform rotation with, from top to bottom:  l =2, m=-1 ; l =2, m=-2 ; and 

l =3, m=-3 .  The dotted lines are for differential rotation.
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For PG1159-035, the observed value of d(ln ∏obs )/dt  for the 516s period 

implies a rotation period of order 2000 to 4000s for modes with l =- m = 3.  This 

preliminary estimate corresponds to a rotation velocity of about 35-50km/s, and is 

consistent with the rotation velocities of DA white dwarfs as reported by Pilachowski 

and Milkey (1984).  We note also that the period ratios in another non-radially 

pulsating white dwarf, the ZZ Ceti star L19-2, suggest that modes with l  =1 to 5 are 

present (O'Donoghue and Warner 1982).  Dziembowski (1977,1985) has shown that 

geometric cancellation effects greatly reduce the luminosity variations for larger values 

of l .  Hence it appears that the values of l  and m suggested by this analysis are not 

unreasonable.  In any case, it is clear that the effects of rotation on the observed value 

of d(ln∏)/dt must be taken into consideration.

The rate of rotational spin-up by contraction is about the same for the models 

with reduced neutrino emission as for the models that include neutrinos.  Since rotation 

can play an important role in determining the observed rate of period change, 

observation of d(ln∏)/dt alone is insufficient to uniquely constrain the neutrino rates.  

However, as measurements of d∏/dt for additional modes in PG1159 and other objects 

become available, the prospects for observationally separating out the rotation effects 

are good, in which case the constraints will become severe.

5.6  Rates of Period Change for DBV Models

5.6.1 Numerical Results

The run of d(ln∏)/dt with respect to effective temperature for DBV models is 

illustrated in Figure 5.7.  For the 0.60Mo model with a helium-rich envelope 

(I60BC1Y), we find values of  d(ln∏)/dt  ranging  from 2.3x10-16s-1 at Te=30,000K 

to about 1.0x10-17s-1 at Te=20,000K.  Therefore  d(ln∏)/dt is a more sensitive 

function of Te than in any other model that we investigated.  For example, the pure  
12C 0.60Mo sequence showed values of d(ln∏)/dt of 2x10-16s-1 at Te=30,000K 
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down to 7x10-17s-1 at Te=20,000K.  This difference in the behavior of d(ln∏)/dt as a 

function of Te for two models of the same mass can be understood in terms of the 

differences between the compositional structure of the pure 12C model and the more 

realistic compositionally stratified model. These effects will be discussed in more detail 

in the next subsection.

Examination of the three 12C sequences illustrates the dependence of 

d(ln∏)/dt on stellar mass.  Lower mass models show larger values of d(ln∏)/dt through 

the range of effective temperature of DBV stars.  This reflects the simple fact that, for a 

given effective temperature, lower mass white dwarfs have a larger radius, therefore 

higher luminosity, and have a lower total heat capacity;  hence the rate of leakage of 

thermal energy is larger than in more massive white dwarfs.

5.6.2  Comparison With a Simple Cooling Model

The cooling rate for a white dwarf can be estimated analytically using the 

simple model of Mestel (1952).  When neutrinos and nuclear burning are unimportant 

luminosity sources, the Mestel cooling theory relates the photon luminosity, and 

therefore the cooling rate, to the temperature of the isothermal core (see the discussion 

of Van Horn 1971).  Assuming a mass-radius relationship for white dwarfs, we can 

then relate the cooling rate to the effective temperature to obtain:

d(lnT e)                 µ  0.286    M  -1.190
_______   = -5x10 -30  A ( ___)     ( __)       T e2.857

  dt                   µe2        M o

(5.11)

where µe is the mean molecular weight per electron, and A is the atomic mass of the 

ions.  The derivation of equation (5.11) is presented in the Appendix.

For high-order g-modes in slowly rotating (∏puls <<∏rot ) stars, the 

relation of Winget, Hansen and Van Horn (1983) (their equation 3) becomes
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Figure 5.7:

Relative rate of period change as a function of effective temperature for the k=25, 

l =2 mode in the pure 12C (dashed lines) and stratified carbon and helium (solid 

line) sequences.  The dotted line represents the 0.60Mo sequence without neutrino 

emission.
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d(ln ∏)     1  d(lnT)              ∏     d(lnR)
______  = - _  _______  + ( 1-b rot  ____ )  ______ (5.12)
  dt       2    dt               ∏rot      dt

where T is the temperature in the zone of the star where the adiabatic period is 

determined.  The rotation term, brot , discussed in the Appendix, is of order unity.  

For the DBV stars, d(lnR)/dt << d(lnT)/dt .  Hence, when a white dwarf cools 

in the Mestel fashion, d(ln∏)/dt is a measure of the cooling rate of the outer layers of 

the star, and is uniquely determined by the effective temperature.  At low effective 

temperatures, the values of d(ln∏)/dt in the models do follow the expectations based on 

the simple Mestel cooling model.  The values of d(ln∏)/dt are the same to within a 

factor of two, and seem to follow a power law of the same slope.

Dependence of the mass-radius relationship for white dwarfs on composition 

and other factors, plus the complicating effects of non-ideal gas contributions to the 

equation of state, affect the constant in equation (5.11). Also, we may employ the rate 

of change of the effective temperature in  equation (5.12) in this discussion with 

appropriate adjustment to the factor of 1/2 that appears there. Since the offset in 

d(ln∏)/dt between that given by the cool 12C models and that implied by equations 

(5.11) and (5.12) is roughly constant with mass, we can recalibrate the constants of 

equations (5.11) and (5.12) empirically.  Setting T=Te and combining yields

d(ln ∏)               µ   0.286    M  -1.190
______  = 2x10 -30  A ( ___)     ( __)       T e2.857 (5.13)
  dt                µe2        M o

which reproduces d(ln∏)/dt quite well for models below Te=24,000K.  In Figure 5.8 

we have replotted the numerical results of Figure 5.7 on a logarithmic scale.  Also 

illustrated in Figure 5.8 is the analytically determined value of d(ln∏)/dt (eq. [5.13]) for 

pure 12C white dwarfs of 0.40 and 0.60Mo. 

We can isolate the effects of neutrino cooling, as measured by the rates of 

period change, by considering the 0.60Mo pure carbon model.  At higher effective 

temperatures, 
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Figure 5.8:

  

Same as Figure 5.7, but plotted on logarithmic scales.  The straight solid lines are 

analytic determinations (equation [5.13]) of d(ln∏)/dt for 0.40Mo (top) and 

0.60Mo (bottom) pure 12C white dwarfs.
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this model cools more rapidly (along a steeper power law) than does the model with no 

neutrinos, until Lν/Lγ ≤0.2 (T e~25,000K).   This is apparent in Figure 5.8.  

Stronger neutrino emission leads to a stronger dependence of d(ln∏)/dt on Te than in 

the analytic case until the neutrino luminosity drops well below the photon luminosity.

At high effective temperatures, neutrinos also influence the cooling of the 

stratified model.  Because of the higher core temperature of the stratified model, the 

energy loss by plasmon and bremsstrahlung neutrino emission was about twice the rate 

in the pure 12C, 0.60Mo model.  Hence, in the stratified model, neutrinos remain 

important down to lower Te.  The effects of composition on the cooling rates also 

contribute to the different behavior of d(ln∏)/dt for the model with a helium-rich 

envelope.  In the model with a helium envelope, most of the thermal energy is released 

near the outer boundary of the degenerate core.  In the temperature range of the DBV 

stars, this boundary moves outwards into a region containing a substantial mass 

fraction of helium.   Since the period is being formed near this degeneracy boundary, 

d(ln∏)/dt drops below the value for the pure 12C models.  The major reason for this is 

the factor A in equation (5.13).  This is why, at the cool end of the DBV sequence, the 

helium envelope models show smaller values of d(ln∏)/dt than the pure carbon models.

5.7  Other Effects

The reported value of d(ln∏)/dt for PG1159-035 corresponds to a timescale 

for period change of about 1 million years.  This is in qualitative agreement with the 

timescales present in 0.60Mo and 0.78Mo PWD models at log(L/Lo)<2.2.  The high 

degree of degeneracy in these standard nonrotating post-PNN PWD models precludes 

any radius changes large enough to produce the negative value of d∏/dt observed in 

PG1159-035.  The possibility of placing PG1159-035 at log(L/Lo)>3.0, where 

contraction in the standard carbon/oxygen models is important, is unattractive; even 

though the uncertainty in the luminosity of PG1159-035 is large it would then become 

difficult to match the magnitude of d∏/dt.
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One possibility is that this apparent discrepancy may, in fact, be attributable to 

our neglect of nonadiabatic effects.  Evolution of the star into an instability strip will 

mean that the growth rate towards instability (see Chapter 6) increases with time.  If the 

adiabatic evolutionary period increase is small (a~b  in equation 5.3) then the observed 

value of d∏/dt could reflect the nonadiabatic contributions to the pulsation period.  The 

nonadiabatic analysis of evolving PNN models reported in Chapter 6 suggests that this 

effect is not important when nuclear burning excites the pulsations.  Future  fully 

nonadiabatic studies of models of cooler PWD models more appropriate to PG1159 

will show if nonadiabatic effects are important for d∏/dt in those stars.

Other evolutionary considerations may also contribute to the observed sign of 

d∏/dt.  For example, a heavier core composition than carbon or oxygen would delay 

the onset of degeneracy in PNN models, and thus permit significant changes in radius 

at lower luminosities.  It would be very interesting if future refinements of the α-

capture cross-sections from 12C and beyond, or the carbon burning rates, lead to a 

higher mean atomic weight in white dwarf interiors than current models predict.

If the DOV stars are losing mass via a steady stellar wind, the pulsation period 

will change in response to the changing stellar mass.  To first order, the rate of change 

of the pulsation period due to mass loss is 

d(ln ∏)      d(ln ∏)  dM
_______   =  _______  __     . (5.14)
  dt           dM    dt

For PG1159 models, d(ln ∏)/dM  (=-B  in equation [4.1]) is of order -1.7; hence for 

the rate of period change via mass loss to exceed the rate of period change due to 

conservative evolutionary effects, the mass loss rate (=-dM/dt ) must be greater than 

or of order 2x10-7Mo/yr.  Cerruti-Sola and Perinotto (1985) find mass loss rates in 

some PNN of 10-7 to 10-9Mo/yr.  The mass loss rates for PG1159 stars are not 

known,  but they do have some form of stellar wind,  based on the presence  of 
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emission features in their spectra (Wesemael et al. 1985).  Mass loss leads to 

increasing periods with time, while possible accretion of matter (say from the 

interstellar medium or in a binary system) will result in decreasing periods with time.

Different progenitors of PWD stars can also be considered.  It is interesting to 

note that models appropriate to hot subdwarfs evolving along the "Extended Horizontal 

Branch" (e.g., Greenstein and Sargent 1974) in the PG1159 region of the H-R diagram 

(Wesemael, Winget, Cabot, Van Horn, and Fontaine 1982) were used in WHVH and 

gave accurate estimates of the observed magnitude and sign of d∏/dt for PG1159-035.  

Another set of models to consider are the "born-again" PNN (Iben et al. 1983, Iben 

1984), which experience a final helium shell flash at low luminosity that returns them to 

the AGB to retrace their PNN-PWD evolutionary track.  Following the flash, these 

models experience a phase of radius increase. While this phase is very rapid, leading to 

a very low expected space density of such objects appropriate to the PG1159 stars, this 

model may show interesting pulsational behavior.

As we have seen, the observed rate of period change for a hot white dwarf is 

influenced by various factors such as age, upbringing and environment.  Fortunately, 

we can place limits on the rotation period, mass loss rate, luminosity, and surface 

temperature from other observations.  With these constraints on the models, we should 

be able to decode the information that the rate of period change provides about the 

fundamental physics of white dwarf interiors.
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"You will find excitement in your working life"

                                                   -fortune cookie from North China restaurant

CHAPTER 6

G-MODE INSTABILITIES IN PNN MODELS DRIVEN

BY NUCLEAR BURNING

6.1 Introduction

One feature that all evolutionary models of PNN have in common is the 

presence of vigorous nuclear shell burning sources.  Models of stars with helium-rich 

surfaces, such as the stratified models used in this work, are powered by a He-burning 

shell at high luminosities (see also Iben and Tutukov 1984, Iben 1984, Wood and 

Faulkner 1986). Early studies, pre-dating the discovery of the DOVs, of the pulsation 

properties of PNNs reported pulsation driving resulting from the ε-mechanism (see 

Section 6.3.2 below, and Cox 1985 and references therein) operating in the hydrogen 

shell burning region (DeGregoria 1977, Sienkiewicz and Dziembowski 1977, 

Sienkiewicz 1980).  Unfortunately, these models are probably inappropriate to the 

known DOVs for a number of reasons.  The most obvious and most important reason 

is the hydrogen-rich surface layer and the attendant H-burning shell source which 

destabilizes the models.  In addition, at least in the work of DeGregoria (1977), the 

phase delays in the hydrogen burning networks were ignored in the perturbation of the 

specific energy generation rate, ε (Cox 1955, Unno et al. 1979).

In this chapter we explore the role of the helium shell burning source in the 

excitation of nonradial g-mode pulsations in PNN and hot PWD models.  In the 

Section 6.2, we briefly describe the linearized nonadiabatic pulsation equations that we 

solve in order to ascertain the stability of a given mode in a stellar model against self-

excited pulsations.   We then present the stability coefficient in the form of an
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integral to demonstrate the excitation and damping mechanisms that are relevant to 

PNN models, concentrating on the ε-mechanism.  In the final section we report the 

results of the stability analysis of PNN models, and we discuss the significance of the 

instabilities.

6.2  Linear Nonadiabatic Oscillations

The linearized perturbation equations for nonradial oscillations are equations 

3.9-3.15.  For the purpose of investigating the stability of the oscillation mode, we now 

retain equations 3.12-3.15.  In this way, information about the nonadiabatic properties 

of the solution of the equations is gained, at the expense of having to solve a larger set 

of equations.   

The nonadiabatic equations can be expressed as an extension of the adiabatic 

Dziembowski equations presented in Chapter 3 (Saio and Cox 1980).  They form a 

system of six first order complex linear differential equations in six complex 

unknowns.   Unlike the adiabatic eigenfunctions, the nonadiabatic eigenfunctions and 

the eigenvalue are complex quantities.  Two additional eigenfunctions are required to 

complete the set.  They are 

y5 ≡  δs/C p   ;   y 6 ≡  ( δL/L) rad     . (6.1)

The eigenfunction y5 is the Lagrangian perturbation of the specific entropy normalized 

to Cp, the specific heat at constant pressure.  The sixth eigenfunction is the relative 

Lagrangian perturbation of the radiative luminosity.  The details of the derivation of this 

form of the nonadiabatic equations have been worked out by several others (Saio and 

Cox 1980, Carroll 1981, Winget 1981) and will not be repeated here.  Winget (1981) 

discusses the limitations of the treatment of  perturbations of the convective flux in this 

scheme; for the models that we analyze in this section such details are not centrally 

important.
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We examine the pulsation properties of our models with a fully nonadiabatic 

nonradial pulsation code which has been described in detail by Carroll (1981) and 

Winget (1981).  The solution of the equations provides the value of the complex 

eigenvalue for a given mode in a given model.  The eigenvalue may be written (Winget 

1981) as

σ = σR + i  κ (6.2)

where σR is the real part of the eigenvalue, and is equal to 2π divided by the pulsation 

period.  In practice, σR is identical to the eigenfrequency calculated using the adiabatic 

equations.  The imaginary part of the eigenvalue, the stability coefficient κ, has the units 

of inverse seconds, and is the reciprocal of the e-folding time for the pulsation 

amplitude.  An unstable mode (amplitude grows with time) has a negative value of κ, 

while a mode that is stable (amplitude decays with time) has a positive value of κ.

6.3  An Integral Expression for the Stability Coefficient

In this section we will derive an integral expression for the stability coefficient 

κ .  We will use this integral to identify the processes responsible for driving and 

damping nonradial g-modes in PNN models.  We will concentrate on the influence of 

nuclear burning on the stability of g-modes.  

6.3.1  The Work Integral

We begin by thinking of each mass shell in the model as a separate Carnot 

engine.  The amount of work done by the shell on its surroundings over a complete 

pulsation cycle, ∆W, is obtained by integrating the equation of conservation of energy 

(equations [3.4]) over a pulsation cycle:

         ds
∆W = ∫ T ___ dt  . (6.3)
         dt   
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Under the assumption that the equilibrium configuration remains unchanged over a 

pulsation cycle (see Section 5.2) equation (6.3) is (Unno et al. 1979)

         ds           d  δs
∆W = ∫ T ___ dt = ∫ δT ____  dt    . (6.4)
         dt            dt

From equation (3.12)

       δT       1                
∆W = ∫ ___  δ( ε - __ [ ∇• F]) dt   , (6.5)
        T        ρ

or, expanding the right hand side,

       δ T            δ T    1                
∆W = ∫ ___  δε dt    -  ≡ ___ δ ( __ [ ∇• F]) dt   . (6.6)
        T               T      ρ

Performing the cyclic integrations in equation (6.6), we have

           π       δ T*        δ T*     1     
    ∆W =  __ Re{ ___ δε  -  ____ δ ( __ [ ∇• F]) }    (6.7)
          σR      T          T      ρ
   

If ∆W for a given shell is positive, then energy is added to its surroundings over a 

pulsation cycle, and the mode is destabilized locally.  If the net amount of work done 

over a cycle is negative, then the shell eats energy and the pulsation is locally damped.  

The global stability or instability for a mode is determined by the sum of all 

these local contributions to damping and driving over the whole stellar model:

W = 0∫M ∆W dmr (6.8)

If W is positive, then the model is unstable to pulsation; the model is stable if W is 

negative.  The rate of growth or decay of the amplitude of a mode is related to the total 

energy of the pulsation and the amount of work done by the pulsation over a cycle 

 
129



(Cox 1980, §9).  Specifically, the rate of growth or decay is 1/2 the rate of change of 

energy in the mode (since the energy of a mode is  proportional to the square of the 

amplitude of the pulsation), or

    1  W
κ = _ ____    , (6.9)
    2 ∏ E   

where

     1
E =  _ σ2 0∫M | δr | 2 dmr (6.10)
     2

is the kinetic energy of the system (Cox 1980, §16).  

In the numerical calculations of stability, the stability coefficient obtained from 

the work integral (using the nonadiabatic eigenfunctions) should agree with the 

imaginary part of the nonadiabatic eigenvalue obtained from the numerical solution of 

the nonadiabatic equations that yielded the eigenfunctions.  In practice, the integrated 

stability coefficient (equation [6.8]) is usually within a factor of 2 of the eigenvalue 

stability coefficient.  Since the integrated stability coefficient involves numerical 

integration of quantities that result from the numerical solution of the set of 

nonadiabatic equations, it is less reliable than the eigenvalue stability coefficient.  

Therefore, in the discussion of stability in Section 6.4, we will consider only the 

eigenvalue stability coefficient, although we use the behavior of the work integral to 

determine the areas of driving and damping.

6.3.2  The ε- Mechanism

The term "ε-mechanism" refers to the effects of perturbations of the specific 

energy generation rate on the excitation and damping of pulsations.  These effects are 

all contained in the first term on the right-hand side of equation (6.7).  Since we are 

interested in the helium-rich DOVs in this analysis we need only concern ourselves 

with energy losses from neutrino emission and energy production through the 

helium—burning reaction network.  In the case of helium burning we may treat the 

perturbations of ε in a straightforward manner and do not require consideration of 
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phase delays; that is, rates of individual reactions comprising the triple-alpha sequence 

in our models have time scales much shorter than the pulsation periods of interest.  

Thus the logarithmic derivative of ε with respect to temperature at constant density (ν) 

has its typical equilibrium value of about 40.  This is the same conclusion reached by 

Boury and Ledoux (1965) for radial pulsations in helium core-burning models.  

The local contribution of the ε-mechanism to the work integral is

               δ T  2      δT* δρ
∆Wε = Re( ε [ | ___|  ν +  ___ __  λ ]) (6.11)
              T          T   ρ

for a zone, where ν and λ are the usual logarithmic derivatives (Cox 1968, §27).  When 

∆Wε is greater than zero the net effect of the ε-mechanism at the zone is to drive the 

pulsation; a negative value of ∆Wε indicates damping.  

For regions where energy generation by helium burning is much greater than 

the energy losses by neutrino emission, ε is greater than zero, ν ~ 40, and λ ~ 2.  In 

such regions, all terms in equation (6.11) are positive, and driving always results.  In 

regions where neutrino energy loss exceeds energy generation by nuclear burning, ε is 

less than zero and the ε-mechanism damps oscillations.  A sharp filter results because 

the effect of the ε-mechanism is strongly peaked at the position of the narrow burning 

shell; only modes with significant amplitude in this narrow region are affected.  The 

total stability of a given mode in a given model is a result of the combined effects of 

driving and damping from the ε-mechanism and radiative dissipation processes in all 

regions of the star. 

6.4  Numerical Results: Nuclear Driving in PNNs

The models used for the nonadiabatic analysis are from the stratified 0.60Mo 

sequence I60BC1Y.   We find nonradial g-mode instabilities, driven by the 

ε–mechanism, in all our models with active helium-burning shells.  This is dramatically 

illustrated for the model at log(L/Lo)=3.21 in Figure 6.1.  For this mode, with l  = 1 
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Figure 6.1:  

(a) Work done as a function of fractional radius for the l =1, k=5 mode in the 

0.60Mo stratified model at log(L/Lo)=3.21 (model 1 in Table 6.1).  The large peak 

is at the position of the helium burning shell (see panel [c]) and results from the ε-

mechanism.

(b) The relative Lagrangian temperature perturbation for the mode described in (a).

(c) The specific energy generation rate ε as a function of fractional radius.  The 

sharp peak is the helium burning shell.
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and k  =5, δT/T  is large at the position of the helium-burning shell, resulting in the 

large value of ∆W.  The second extremum in δT/T  lies in a region of significant 

neutrino energy losses below the shell, accounting for some of the damping seen in the 

top panel of Figure 6.1 at r/R  of 0.25.  

The PNN models used here (down to 100Lo) are too hot to have significant 

partial ionization zones in the envelope. Thus, without any driving by the κ  or γ 

mechanisms (see Cox 1985 and references therein),  radiative damping outside the shell 

can be significant.  Radiative damping leads to a broad low-level damping region just 

outside the peak of nuclear driving, where δT/T  is still large above the burning shell.

The global stability or instability for a given mode depends strongly on the 

position of the final extremum in δT/T  relative to the burning shell.  Figure 6.2  

illustrates this remarkable and simple selection mechanism.  The behavior of δT/T  for 

a given mode is determined by the structure of the g-mode propagation region; the final 

maximum in δT/T  occurs near the outer edge of this zone.  In the models considered 

here, modes with lower frequencies have wider g-mode propagation regions, with the 

outer boundary closer to the surface.  When the final extremum in δT/T  occurs below 

the burning shell, the mode is usually stabilized by neutrino damping.  As k  increases 

(and the frequency decreases), the outermost local maximum in δT/T  scans across the 

peak in ε, producing instability.  As k  increases further, the final extremum in δT/T  

moves outside the burning shell and into the envelope, where radiative dissipation 

stabilizes the mode.  Hence nuclear shell burning provides a natural mechanism both 

for driving the pulsation and selecting which modes are unstable.  

Our results for modes with l   = 1 are summarized in Table 6.1.  In Table 6.1, 

τL is the e-folding time for decrease in stellar luminosity, and gives an indication of the 

evolutionary timescale for the models.  Unstable modes have negative values for the 

stability coefficient; the e-folding times for the pulsation amplitudes are derived from 

the assumed time dependence of the displacements (δx(t) ∝ e -t/ τ where τ=κ-1  

and κ is the stability coefficient defined in Section 6.2).  Presumably, a self-excited
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Figure 6.2:

The Lagrangian temperature perturbation in a 0.60Mo helium-rich PNN model at 

log(L/Lo)=3.21 for dipole (l =1) modes with k=2, 4, and 6.  The dashed line is the 

specific energy generation rate.
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Table 6.1

Periods and Damping Times for l   = 1 g-Modes in PNN Models

     (1)     (2)     (3)     (4)     (5)

     M* /Mo     0.60    0.60    0.60    0.60    0.50

 log (L/Lo)     3.208    2.535    2.009    3.215    2.114

           Teff     5.254    5.187    5.099     5.176    4.993

      τ L[yr]   1.32x104  1.32x104  4.05x104  5.00x103  6.41x104

   Age [yr]   7.01x103  2.25x104  4.96x104  2.60x103  1.61x105

 Lnuc/Lphot    0.756    0.189    0.038    0.605    0.292

========== ========== ========== ========== ========== ==========
 ∏[s] k  =1     50.28     49.08    50.08     55.76     68.73

       τ  [yr] +2.03x103  -7.99x105 +1.08x106 +2.03x100 +7.10x105

 ∏[s] k  =2    67.86    69.88   73.55     72.47    94.11

       τ [yr] -1.21x104 -4.60x104 -4.07x105 +2.25x102  -2.95x104

 ∏[s] k  =3   84.29   87.15    91.55     91.66    124.1

       τ [yr] -2.89x103 -3.01x104 +9.89x104 +2.53x103 -2.13x104

 ∏[s] k  =4   107.1   111.8   117.1   110.7   162.3

       τ [yr] -2.20x103 +4.02x104 +4.38x104 -2.86x103 -1.14x105

 ∏[s] k  =5   125.6   133.4   140.6   128.5   192.6

       τ [yr] -5.93x103 +1.03x104 +3.37x103 +3.33x103 +3.00x104

 ∏[s] k  =6   150.0   154.8   157.7   151.1   213.7

       τ [yr] +7.40x103 +1.82x103 +8.31x102 -3.78x103 -3.61x104

 ∏[s] k  =7   169.5   171.5   178.9   175.8   247.0

       τ [yr] +1.06x104 +1.24x103 +8.00x102 -2.41x103 +4.89x105

 ∏[s] k  =8   187.0   193.5   203.8   195.9   283.4

       τ [yr] +2.11x103 +8.01x102 +1.98x102 +3.45x103 +4.43x104
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mode will reach finite amplitude if it remains unstable over several τ.   In the models 

from I60BC1Y, presented in the first three columns in Table 6.1, this is the case for 

most of the modes that were unstable.  Another interesting result is that even when the 

helium-burning shell provides only a small fraction of the total luminosity, the ε-

mechanism remains potent enough to destabilize some modes, as in the 0.60Mo model 

at ~100Lo.

We find nuclear driving in another set of evolutionary PNN models 

(P60BI1Y).  The instabilities found in these simpler stratified models are very similar 

to those found in the models discussed above.  In addition, we constructed a 0.50Mo 

PNN sequence (P50BI1Y) that contained an active helium shell source.  The pulsation 

periods for this model, as given in Table 6.1, are about 40% longer than in the 0.60Mo 

sequences, as one would expect from the discussion in Chapter 4.  Clearly, the effects 

of total stellar mass do not change the basic results of the stability analysis: modes with 

k  ~2 to 6 are unstable in PNN models.

The inescapable conclusion from these exploratory calculations is that the 

presence of helium shell burning sources demands that some g-modes are pulsationally 

unstable.  Since the He-shell burning sources are found in essentially all evolutionary 

calculations of hydrogen-deficient PNNs this result is universally applicable to any 

stars which may be represented by such models.  For modes that are stable against 

pulsation in our models, the net effect of the ε-mechanism is to reduce the amount of 

damping in the core, thus possibly allowing any envelope partial ionization driving 

mechanisms (that we did  not find, but see Section 1.3.2) to destabilize the mode.  This 

combined effect of the ε-mechanism and envelope driving mechanisms would 

destabilize a mode that would be found to be stable when just one or the other effect is 

considered.  Most promising is the possibility of nuclear burning driving providing a 

filter mechanism which may selectively enhance certain modes destabilized primarily 

by the κ and/or γ mechanisms.  In Chapter 7 we discuss the implications of nuclear 

burning driven pulsations in PNN on the evolutionary link between these stars and the 

white dwarfs.
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A problem under investigation grows in interaction with its materials, and ... when it 

is completed it is necessarily rough-hewn. ... If every anomaly in experience, and every 

ambiguity in concept, were completely ironed out before the work was presented to the 

public, nothing new would ever appear.

                                                        - J.R. Ravetz

CHAPTER 7

PULSATIONS IN HOT DEGENERATES:  SUMMARY AND APPLICATIONS

7.1  Summary

Delving into the details of computations of stellar evolution, and exploring 

adiabatic and nonadiabatic pulsations is in itself a very rewarding and exciting pursuit.  

But we must always maintain a realistic perspective on the applicability of this work to 

"real" stars, and to related areas of study.  In this final chapter, we step back from the 

details of the calculations and attempt to place the results of this investigation within the 

context of our general notions of stellar evolution.

We have investigated the evolution of stars from the PNN phase to the white 

dwarf phase, and summarize our major conclusions below:

1. The periods seen in the DOV and DBV stars correspond to those of the 

high radial overtone, low l   g-modes in DOV and DBV models.  As a star 

evolves from the PNN phase through the PWD phase, the region of period 

formation moves from within the degenerate core out into the nondegenerate 

envelope.  In 0.60Mo models, this transition occurred at 100Lo.  The transition 

luminosity increases with increasing stellar mass.   Thus the observed pulsation 

periods probe the interiors of the more luminous pulsating degenerates and the 

envelopes of the cooler pulsators.

139



2. Cooling effects dominate residual contraction in determining d∏/dt for 

nonrotating post-PNN models appropriate to PG1159-035 and the other DOV 

stars, as well as the DBVs; therefore the pulsation periods increase with time.  

The timescales for period change are the thermal timescale of the interior, or 

about 1 million years for 0.60Mo DOV models.  The timescale for period 

change is sensitive to the rate of neutrino emission in the core, and the prior 

evolutionary history of the star.  Below 100Lo, the timescale for period change 

is insensitive to the radial overtone k  or the value of l  .  Rotation can affect the 

observed rate of period change for the DOVs; however, because it is 

proportional to the rate of gravitational contraction, it is not an important effect 

for the DBVs.

3. In all PNN models with active nuclear burning shells, we find instabilities 

in the low-order g-modes.  These are driven by the ε-mechanism acting in the 

nuclear burning shells.  The periods of the unstable modes range from 50s to 

214s.  In all models, the presence of an active nuclear burning shell demands 

that some g-modes be unstable.  

We now expand on these three areas by applying them to PNN and hot white 

dwarf stars.  In Section 7.2, we apply our results from item 1 to the DOV and DBV 

stars, and show how the characteristic period spacing may be used to identify the 

modes of pulsation in these stars.  The applications and implications of secular period 

changes are summarized in Section 7.3.  We attempt to link the PNN, their ancestors, 

and their descendents using the results from the nonadiabatic calculations in Section 

7.4.  As with all investigations in astrophysics, this study has raised many more 

questions than it has answered;  we complete this chapter  in Section 7.5 with a 

discussion of future investigations.

7.2 Period Spectra as Seismological Indicators

A striking property of the pulsating degenerates is their  multiperiodic 

variation, such as in the DOV star PG1159-035 and in the DBV star GD358.  If modes 

with the same  radial overtone k   but different  l   are present, then equation  (4.5) and 
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the models imply that the periods should fall in groups with ratios of about 2.4 : 1.4 : 1 

for modes with l  =1,2, and 3 respectively.  If modes with the same value of l   but 

different values of k  are present, then the period differences between modes should all 

be integral multiples of a characteristic period spacing, as we showed in Chapter 4.  In 

searching for those characteristic signatures in real stars, a number of difficulties arise.  

Rotation, aliasing, and other effects can cause problems in interpreting individual peaks 

in the power spectrum; suspected relationships between periods of pulsation must be 

subjected to appropriate statistical tests to ensure that the relationships are not simply 

coincidental. If one of the above relationships between the observed periods can be 

demonstrated, then the full power of the theoretical analysis of the adiabatic pulsation 

properties can be used to make fundamental statements about the stars and their 

pulsations.  

7.2.1  The DOV Stars

The period spectrum of PG1159-035 shows compelling evidence for a 

uniform period spacing.  We list the periods of PG1159, taken from Winget et al. 

(1985), in Table 7.1;  except for the 424.4 s period, the remaining seven periods are 

separated by integral multiples of a minimum period interval, ∆∏, of 21.0±0.3 s to 

within the 2σ uncertainties of the periods themselves.  With this one number, we can 

account for the period spectrum of PG1159-035 with a simple empirical model of the 

mode structure.  Seven out of eight of the periods have the same value of l   and values 

of k  that differ by the amounts indicated in Table 7.1.  

We can use this empirical model of the pulsation spectrum to constrain the 

theoretical models of the DOV stars if we assume that the periods seen are high-order 

g-modes.  If the modes in PG1159-035 are all dipole (l =1) modes, then the observed 

minimum period interval corresponds to a value of ∏o (=∆∏x[l ( l +1)] 1/2 ) of 

29.7s, from the definition of ∏o in Section 4.3.1.  If the modes are l =2 modes, then 

∆∏ corresponds to ∏o=51.4s. In Figure 7.1, we plot these two possibilities along with 

theoretical values of ∏o for the evolutionary models.  If the observed modes are l =1 

modes, then their period spacing corresponds very closely to the characteristic period 

spacing in the 0.60Mo models.  If the modes are l  = 2, then Figure 7.1 shows
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Table 7.1

The Period Spectrum of PG1159-035

                         ∏o + ∆∏(k- ko) [s]

  Period [s]      k                    (∆∏=21.0±0.3 s)

        ========       ======    ==============

390.0 ± 0.9     ko   390.0 ± 0.9

424.4 ± 1.1     ...       ...

451.5 ± 1.2    ko+3   453.0 ± 1.2

495.0 ± 1.5    ko+5   495.1 ± 1.5

516.0 ± 1.6    ko+6   516.1 ± 1.7

538.9 ± 1.7    ko+7   537.1 ± 2.0

645.2 ± 2.5    ko+12   642.1 ± 3.1

831.7 ± 4.2    ko+21   831.2 ± 5.3
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Figure 7.1:

Characteristic period spacing as a function of luminosity for PNN-WD models.  

Dashed lines are for pure 12C models, while the solid line is for the sequence 

I60BC1Y, a stratified model with a helium-rich envelope.  The two data points are 

for PG1159-035:  the upper point is ∏o, derived from the observed spacing of the 

periods,  if the modes of pulsation in PG1159 are l =2 modes; if l =1, then the 

spacing of the periods suggests the lower value of ∏o.  The horizontal error bars 

associated with these points reflect the uncertainty of the luminosity of PG1159; the 

vertical error bars show the degree of fit of a single minimum period spacing to the 

observed periods.
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that PG1159-035 would have to have a mass well below 0.40Mo, making it very 

difficult to believe that PG1159-035 is the garden-variety PNN descendent.  This is 

very strong evidence that the mass of PG1159-035 is 0.60Mo and that it is a dipole 

(l =1) pulsator.

Above 10Lo, the value of ∏o is not very sensitive to the composition of the 

models, and is most sensitive to the total stellar mass. With only a ballpark estimate of 

the star's mass, if we can determine that a period spectrum contains periods that are 

separated by integral multiples of a minimum period interval,  then comparison with the 

grid of models results in Section 4.3.1. allows us to uniquely constrain the value of l   

of the modes present in the power spectrum. Fixing the value of l  , we can go back and 

iteratively use ∏o to determine the mass of the star more carefully.  Given the mass of 

the star and the value of l   , we can estimate the value of k   by direct comparison with 

the period spectra of the models.  In models appropriate to PG1159, modes with k  ~20 

to ~40 appear to have the correct periods.  Such mode identifications are extremely 

valuable for the investigation of the excitation and mode selection mechanisms 

operating in the DOV stars.

7.2.2  DBV Stars

This method should naturally extend to the pulsating DB white dwarfs.  The 

very rich power spectrum of GD358 (Winget et al. 1983) initially suggested rotational 

splitting of several l  =2 modes.  However, with additional observations, Hill et al. 

(1986) find that the uniform frequency splitting is different for some individual runs, 

and not present at all in others.  With further observations, it may be possible to 

interpret the period spectrum as consisting, for the most part, of a sequence of periods 

separated by integral multiples of a minimum period interval.  In the luminosity range 

containing the DBV instability strip (-0.9≤log(L/Lo)≤ 1.6), for 0.60Mo) the theoretical 

value of ∏o is sensitive to the composition of the outer layers.  If the pulsation modes 

observed in the DBVs correspond to several large values of k   with the same l   then an 

identification of ∏o could provide a new handle on the envelope composition of the DB 

white dwarfs.
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The additional dependence of ∏o on composition makes the use of period 

spacings as a mode identifier more complicated in the  DBVs than in the DOVs.  

However, the mass and temperature of a given DBV can be constrained if (dln∏)/dt is 

known for the model.  In Section 7.3.2 below, we show how an observed rate of period 

change can be a temperature probe for the DBVs or, given the effective temperature 

from spectroscopic determinations, d(ln∏)/dt is sensitive to the mass and composition.  

The use of period spacings and measured rates of period change in concert with the 

more conventional diagnostics of gravity and effective temperature should make mode 

identification possible for the rich DBV pulsators as well.

7.3 Rates of Period Change

Because of the sensitivity of d(ln∏)/dt to such quantities as stellar mass, 

structure, composition, and evolutionary phase, its measurement will be a valuable 

probe of the properties of DOV and DBV stars. We note that in contrast to the DOV 

stars, the DBV models evolve at almost constant radius.  Thus the radius term in 

equation (5.12) is unimportant relative to the cooling term, and the rate of period 

change is insensitive to the rotation rate, removing one additional dimension of 

uncertainty for these stars.

7.3.1  DOV Stars

We have shown that the measured value of  d∏/dt  for PG1159-035  agree 

with the theoretical value for nonrotating models in magnitude, but not in sign.  

Rotation effects require a value of l   of 2 or 3 for the 516 s mode to reverse the sign of 

d∏/dt.  This is in contradiction to the value of l   of 1 from the period spacing.  In 

addition,  if rotation effects are important enough to result in the negative value of 

d∏/dt, then the resulting frequency splitting  would overwhelm the uniform  period 

spacing for consecutive values of k .  Hence the sign of d∏/dt and the apparent 

uniform period spacing require two incompatible interpretations.  The solution to this 

problem would benefit greatly from the measurement of d∏/dt for another mode in 

PG1159-035.  If d∏/dt were different in sign or magnitude, this would be compatible 

 
146



with a rotational explanation since modes with different m  are likely to be present.  If 

d∏/dt is the same for all measurable modes, implying that the analysis in Section 7.2 is 

correct, then alternative explanations for the sign of d∏/dt will be required.  For 

example, as discussed in Chapter 5, a heavier core composition of the PG1159 stars 

could account for the decreasing periods.  Such models would imply that carbon and 

oxygen burning took place in a prior evolutionary stage.

Measurement of the rates of period change for other DOVs are now essential 

to establish their evolutionary status.  If negative values of d∏/dt turn out to be another 

of their class properties, and they are not attributable to rotation, then these stars do not 

fit into the standard picture of post PNN evolution as presented here.   If we can sort 

out the effects of rotation, then the rate of period change is telling us something 

significant and fundamental about the physics of the pulsating PG1159 stars.

7.3.2  DBV Stars

Within the framework of the preliminary theoretical results of Chapter 5, the 

measurement of d(ln∏)/dt in DBV stars will help greatly in sorting out the remaining 

uncertainties in the evolutionary models.  Observationally, the mass distribution of the 

white dwarfs is quite narrow, and is centered on 0.6Mo (Weidemann and Koester 

1983);  the mass distribution of the DB stars is almost the same (Oke et al. 1984).  

Hence, if we know (or assume) a mass of 0.6Mo for the DBV stars, d(ln∏)/dt can be 

used as an  independent temperature estimator.  If the composition of the model is 

roughly correct, then an uncertainty in the measured value of d(ln∏)/dt of 10% 

translates to a temperature uncertainty of about 3.5%, or about 900K at 24,000K.

Alternatively, with the spectroscopically determined value of Teff, the 

observed d(ln∏)/dt will be an indicator of the mass of the star, and of the chemical 

composition at the degeneracy boundary.  For example, consider a DBV at a 

temperature of 24,000K.  Based on the results for the stratified model, we expect that 

the value of d(ln∏)/dt should be 7.2x10-17s-1.  If the observed period change was 

measured to be significantly larger than this value (>10-16s-1), then that would 

strongly suggest a mass smaller than 0.6Mo.  Conversely, a smaller rate of period 
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change (<5x10-17s-1) would indicate a mass significantly greater than 0.6Mo.  

Whatever analysis is undertaken, we see that knowledge of d(ln∏)/dt will provide a new 

tool in probing the nature of DB white dwarfs.

We can estimate the time required to observe secular changes of this 

magnitude using the concept of the (O-C)  diagram (cf. Solheim, et al.  1984, Winget 

et al.  1985).  A curve in the (O-C)  diagram represents the difference, in seconds, 

between a time of maximum computed from an ephemeris and the observed time of 

maximum as a function of the number of cycles that have elapsed.  This curve can be 

represented as an expansion about derivatives of the period,

(O-C) = ∆t o+∆∏ E + 1/2 ∏E2(d ∏/dt)+...    (7.1)

where ∏ is the pulsation period, E is the number of cycles through which the star 

pulsates in a baseline time of t , and ∆∏ is the change in period over the baseline.  The 

first term in equation (7.1) represents a correction to the time of maximum (or time of 

zero according to arbitrary normalization). The second term represents a correction to 

the best period, ∏.  If we assume we have the best fit for t o and ∏, then the first two 

terms in equation (7.1) are zero.  If we further assume that the first and second 

derivatives of the period with respect to time are small (as we have found for the 

theoretical models), then we can neglect the higher order terms and we have

          (O-C) = 1/2 ∏ E 2 (d ∏/dt) (7.2)

or, since E=t/ ∏,

 t = {2[ d(ln∏)/dt] -1 [O-C]} 1/2  (7.3)

Here (O-C)  represents the accumulated delay associated with the period change. To 

detect a change, clearly the accumulated (O-C)  must be larger than the error of 

measurement. Thus, assuming a typical timing accuracy of 1 second, we can tabulate 

the time base required to detect a rate of period change, implied by the stratified 

0.60Mo model, as a function of effective temperature:
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                                        t 30000K= 2.6 yr

t 25000K= 4.5 yr

  t 20000K= 6.3 yr.

We are can now evaluate the prospects for detecting a rate of period change in 

the two DBV stars currently being monitored.  GD358 has been under observation 

since its discovery in May, 1982. Although no data were obtained on the object in 

1983, high quality data are available from 1984 to the present.  If it is possible to bridge 

back to the 1982 data, we anticipate that a detection of d∏/dt for GD358 will be made 

within the next 1-3 observing seasons, depending on its effective temperature.  The 

second star, PG1351+489, has been monitored since May 1984 (Winget, Nather, and 

Hill 1986).   The light curve of this star is consistent with only two periods, dominated 

by a single, large amplitude peak at 489s.  For this reason, individual timings are 

intrinsically more accurate than for GD358 where at least 28 modes are simultaneously 

present.  The decreased timing errors for the large amplitude peak in PG1351+489 

may compensate for the shorter available time baseline on the object.  Hence, 

PG1351+489 may become the first DBV star for which a secular period change will be 

observed. 

7.4  Pulsations in PNN

The instabilities in hydrogen-deficient PNNs described in Chapter 6 provide 

us with a possible tool with which we can link the AGB parents of PNN and their 

PWD descendents within a single evolutionary scheme.  The obvious interpretation that 

the observed DOV pulsations are related to the instabilities that result from nuclear 

burning has one outstanding problem:  the periods that we find unstable are roughly a 

factor of 3 or 4 shorter than the periods in the known DOVs, and are many times 

shorter than those in the central star of K1-16.  The significance of this difference is 

unclear.  Perhaps the difference can be accomodated by the uncertainties inherent in the 

specific details of the structure and composition of the evolutionary models, or in the 

details of the pulsation analysis.
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If the results presented in Chapter 6 are insensitive to these details, then the 

consequences are more interesting.  In this case there are two alternatives.  First, objects 

pulsating with these periods exist and have not been found because of observational 

selectional effects such as the difficulties of observing photometric variations of an 

object embedded in nebulosity, or simply their low space-density.  The second 

alternative is that the basic characteristics of the evolutionary models in this region are 

incorrect and the He-shell burning sources are extinguished in a prior evolutionary 

stage.  This exacerbates the already difficult situation in modeling these objects and has 

serious implications for our understanding of a significant part of post-main sequence 

evolution.  It is entirely plausible that, in the process of PN formation, enough mass is 

lost from the surface that the remaining helium-rich layer is too thin to support a 

helium burning shell.  Alternatively, the helium buffer between the burning shells in the 

AGB progenitor may be smaller than is currently thought, with the consequences, 

again, that that the helium-rich layer in the resulting PNN is too thin to support helium 

burning.  Such conclusions would have  a major impact, as well, on our studies of the 

presumed descendents of these stars: the DBV stars.

7.5  Now What?

Now that a preliminary theoretical framework exists for interpreting 

observations of the hot pulsating degenerates, we are in a position to identify 

deficiencies in our theoretical understanding, and pinpoint promising areas for further 

research.  There are many problems, both theoretical and observational, that suggest 

themselves for further study.  The resolution of even a few of these will go a long way 

towards gaining a more complete understanding of the metamorphosis of PNN into 

white dwarfs.  

First of all, we need  rates of period change for additional  modes in  

PG1159-035, and for other DOV stars.  A determination of the rotation period of 

PG1159-035 that is independent  of the pulsation  observations will determine if  the 

effect of rotation is an important factor in d∏/dt.  With these measurements and 
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reduced uncertainties in the luminosities and effective temperatures of the DOV stars, 

we will be able to firmly establish the evolutionary status of this class of stars, based on 

the framework presented here.  This will, in turn, provide a new and quantitative 

calibration of the rates of energy loss by photon and neutrino emission as well as other 

more exotic species of weakly interacting particles such as axions (Dicus et al. 1978, 

1980), under conditions found within the cores of evolved stars.

We have shown how d∏/dt is sensitive to the mass, effective temperature, and 

envelope composition in the DBV stars.  Ongoing observations of the DBVs should 

provide us with d∏/dt for two of them in the near future for direct comparison with the 

theoretical models presented in this work.

An extended observational survey of hot, hydrogen-deficient compact objects 

for periodic photometric variations is therefore in order.  PNN that have enough helium 

remaining to allow shell burning and the resulting instabilities would evolve into DB 

white dwarfs, and possibly DAs (see below).  The results of such a photometric study 

will be of value in tracing the production of different species of white dwarfs, and may 

provide a direct link to the DBVs from the PNN stage.  This model would also provide 

new quantitative information about the episode of PN formation.  

A class of models that we did not consider explicitly in this work must also 

be discussed.  Currently, the limits to the amount of hydrogen at the surface of the 

DOV stars is not very stringent.  It is possible to have a significant fraction of surface 

hydrogen (He/H≥1) in the hot DOVs that would be undetectable with current 

techniques.  Hydrogen present at this level could support a weak hydrogen-burning 

shell between the helium-burning shell and the surface that could drive pulsations.  

Longer periods than those that are destabilized by helium burning alone would be 

destabilized; the region where hydrogen burning can drive pulsations would lay in the 

nondegenerate envelope, where the amplitude of δT/T  is significant for higher overtone 

modes (see Chapter 6). The nebula that is associated with such a PNN would be 

expected to show significant amounts of hydrogen and helium.  Cooler former PNNs 

with  no  visible  nebula remaining  may be  hot enough  to be  disguised   as DOs  
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even  if they have some surface hydrogen (see below). New evolutionary models, and 

stellar atmosphere calculations, will be able to address these issues.  These should be 

backed up by an extensive series of numerical investigations of the pulsation properties 

of such objects, because although it seems unlikely at present, it is possible that these 

models may not only be relevant to the observed DOV, but may be the only relevant 

models.

As these preliminary results indicate, PNNs with active helium burning shells 

should show periods that are shorter than those seen in the DOV stars; models with 

active hydrogen shells may have unstable periods that are the same or longer.  If a 

hydrogen-deficient PNN or PWD has a small mass fraction of hydrogen in the surface 

layers, then as it evolves the hydrogen will diffuse outwards; eventually, perhaps, it will 

turn into a DA white dwarf with a thin, pure hydrogen envelope.  For example, a DOV 

with a surface mass fraction of 10% hydrogen in the outer 10-5Mo would evolve into a 

DA white dwarf with an almost pure hydrogen envelope of 10-6Mo.  Hence, given the 

present uncertainty in the surface abundance of PG1159-035, descendents of the DOV 

stars could be DA as well as DB white dwarfs.  More accurate determinations of the 

surface hydrogen, helium, carbon, and oxygen abundances of PNN and DOV stars are 

essential to sorting out the true evolutionary links between these stars and the cooler 

white dwarfs.  Such abundances determinations are also important for investigating the 

pulsation driving mechanisms in the DOVs.

New observational equipment and techniques are constantly being developed 

and applied to challenging problems in astrophysics.  For example, the global network 

of high-speed photometers proposed by R.E. Nather and collaborators at the 

University of Texas will provide extended coverage for all types of pulsating stars.  

This extended coverage will reduce the difficulties of interpreting photometric 

observations by removing the diurnal gaps from time-series data.   With this system, 

the complex power spectra of hot degenerates like GD358  and PG1159-035  will  be 

unambiguously resolved.  The preliminary theoretical investigation reported in this 

dissertation should serve as a guide for exploiting the seismological evidence that the 

pulsating degenerates will continue to provide.  Future refinements will be made to the 

input physics and computational techniques, such as more sophisticated 
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multi—component plasma equations of state, opacity data, and self-consistent 

techniques for calculating the evolution of models from the AGB through the planetary 

nebula formation phase.  While we have learned many things about the transition from 

PNN to WD in this investigation, much work is needed before we will satisfactorily 

understand these rapid and exciting stages of advanced stellar evolution.  The purpose 

of this work has been to provide an initial step on what will be a long and productive 

journey towards a better understanding of the final stages of stellar evolution, and most 

importantly, the physics which governs them.
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APPENDIX

A.1  The Cooling Rate of a White Dwarf Photosphere

In the Mestel (1952) theory of white dwarf cooling, the luminosity of the star 

is derived from leakage of thermal energy of the ions in the interior.  Assuming that the 

heat capacity of the nondegenerate ion gas is much larger than that of the electrons, and 

that the core is nearly isothermal, it can be shown that

      3  kM  ∂Tc
L = -  _  __  ___ (A.1)
      2  AH   ∂t

(Van Horn 1971, equation [5]).  In equation (A.1) A is the mean atomic weight, M is the 

total stellar mass, k  is Boltzmann's constant, and H is the atomic mass unit.  By 

representing the opacity in the nondegenerate envelope with Kramer's law (κ=κoρT-

3.5 ) , we can integrate the equations of envelope structure analytically to obtain a 

relationship between the core temperature and photon luminosity (Van Horn 1971, 

equation [7]).  We can combine that relationship with equation (A.1) to produce an 

equation relating the cooling rate of the core to the core temperature,

 d(lnT c)                  µ
________  = -6.2x10 -36  A ( ___)  T c2.5  , (A.2)
   dt                     µe2

where µ is the mean molecular weight per particle, and µe is the mean molecular weight 

per electron.

Assuming a mass-radius relationship for white dwarfs of the form

R = 7x10 8 (M/M o) -1/3 (A.3)

and noting that L=4πR2σT4, we can use equation (7) of Van Horn (1971) to relate the 

core temperature to the effective temperature:
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              µ  2/7    M  -10/21

Tc = 240 A ( ___)    ( ___)        T e8/7  . (A.4)
             µe2       Mo

Combining equations (A.1) and (A.4), we obtain an expression for the core cooling rate 

as a function of effective temperature:

 d(lnT c)                   µ  2/7    M  -25/21
________ = -5.8x10 -30  A ( ___)    ( ___)        T e20/7 (A.5)
   dt                     µ e2       Mo

Finally, by differentiating equation (A.4) and substituting for d(lnT c )/dt  in 

equation (A.5) we have the desired equation for the cooling of the stellar photosphere 

as a function of effective temperature (equation [5.11]):

 d(lnT e)                   µ  0.286     M  -1.190
________ = -5 x 10 -30  A ( ___)      ( ___)        T e2.857

   dt                     µ e2         Mo

(A.6)

A.2  Upper Limit to Rotation Effects on d(ln∏obs)/dt

For a slowly rotating star which conserves angular momentum, equation (5.6) 

gives the rate of period change for the case of uniform rotation.  For white dwarfs, the 

rotation coefficient Crot is approximately ( l [ l +1]) -1  (Brickhill 1975).  Since the 

moment of inertia for a uniform sphere is proportional to R2, we have as an upper limit 

to the rate of change for I in a white dwarf:

d(lnI)/dt ≤ 2 d(lnR)/dt. (A.7)

With the above relations, equation (5.6) becomes

d(ln ∏obs )   d(ln ∏o)     ∏o           2     d(lnR)
_________  ≈ _______  - m ____  [( 2-  _____ )  ______ ] . (A.8)
   dt          dt       ∏rot        l ( l +1)     dt
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The term in equation (A.8) that arises from the rotation of the model is proportional to 

d(lnR)/dt , and can be identified as the term brot  in equation (5.12).

The value of m  may be any integer between -l  and +l , or zero.  Hence,

              l 2+l -1
| brot |  ≤ 2 ( _______ ) (A.9)
               l +1

represents an upper limit to the magnitude of the rotation term brot  in equation 

(5.12).
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