1 Introduction

The following is a guide to running the various nonradial pulsation codes. We
describe the basic features of each code, including the required input, a brief
description of the output, and give some insight to the numerical method
used. We use the set of equations listed in Saio & Cox (1980) and we advise
you to have a copy of this paper handy to explain some of the symbols we
use here. Other general references are Cox (1980) and Unno et al. (1989).
The first book has a skimpy coverage of nonradial oscillations, but describes
things in physical terms. The latter book gives an encyclopedic coverage of
nonradial oscillations, but does not provide as much physical insight.

There are three general nonradial pulsation codes available for use; two
of these exist in both an automated version (for batch jobs) and an inter-
active version that allows you to obtain more detailed results for selected
modes. The codes will solve for p-modes, the f-mode, and g-modes, the only
difference is the input period guess required.

In the succeeding sections, we describe each pulsation code in turn.

2 ANRO.F (interactive) and ANROAUT.F
(batch)

This code uses a General Newton-Raphson (GNRI) relaxation scheme to
solve the full fourth order adiabatic nonradial oscillation equations, given
a guessed { value and pulsation period. The code requires an input model
in the form given by a “prep” code. The prep code reads an equilibrium
model, computes additional pulsation quantities, and arranges everything in
a format that can be read in by ANRO.F. The input files are tapel8.dat and
tapel9.dat.

Input period guesses may be obtained by computing the discriminant for a
given ¢ value. See Osaki & Hansen (1973) for details of how the discriminant
is used. When you look at the discriminant output (discr.dat) there are two
columns: the trial period and the value of the discriminant. The value of
the discriminant goes to zero when the trial period corresponds to an actual
eigenperiod of the model. Thus, you can scan a range of periods for each ¢
value, locate the period where the discriminant crosses zero, and use these
as guessed periods for the adiabatic pulsation code. This is the procedure 1



implemented for ANROAUT.f and CJHANRO. 1.

The original version of this code was written by N. Baker & K. von Sen-
gbush (1969) using the GNRI integrator written by N. Baker (handwritten
notes). The linear finite difference technique employed by this code gives it
second order convergence properties. The code cannot add in extra shells to
improve the accuracy of its results. Practical experience suggests the results
start to suffer from resolution problems past & = 10 (10th radial overtone
mode) in models with 200+ shells.

The current version of the code computes the kinetic energy of oscillation
associated each mode given by:
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It also computes the first order correction to the frequency caused by ro-
tation Cy; and the associated corrections to the eigenfunctions. A further
description and relevant formulae are given in Saio (1981). As a check on the
accuracy of the computed results, we use a variational principle to estimate
both the pulsation period and Cyj from the converged eigenfunctions. Be-
cause we use the converged eigenfunctions and numerically integrate them, we
expect the computed errors to overestimate the actual errors. Tests with var-
ious stellar models show that the agreement between the eigenvalue (GNR1)
period and the integrated (variational) period can show considerable dis-
agreement. Our preferred way to estimate the numerical errors in the period
is to change the zoning of the input model and recompute the periods. These
kind of tests on white dwarf models suggest that ANRO gives periods good
to about 1 % for low order modes.

The output from this code is in the files:

o discr.dat: listing of the discriminant used for period guesses.

o output.dat: complete listing of pulsation period, eigenfunctions, and
rotational correction to the eigenfunctions.

o summary.dat: brief listing with pulsation period, kinetic energy, and
Cyr values.

e cigen.dal: lists the eigenfunctions y; (radial perturbation) and ys (re-
lated to horizontal perturbation) versus —log(1 —m/M,) .



contents of ANROIN.DAT

60800 3 Sequence, mixing-length version

80. 600. 260 10 Starting period, ending period, # of points in discriminant,
max. number of modes to calculate.

0 Not used (was a print option switch)

o weight.dat: lists the weight functions that are proportional to: the
kinetic energy density T(y,r) (most people call this the “weight func-
tion”); the square of the acoustic frequency C(y,r); and the Brunt-
Viisala frequency N(y,r). All of these are listed versus — log(1—m /M)

e gravity.dat: lists the eigenfunctions ys (grav. potential perturbation),
ya (related to grav. force perturbation) and the grav. field weight
function G(y,r) versus —log(l —m/M,) .

See Kawaler, Hansen, & Winget (1985) for the form of the weight func-
tions and their application to PNN models.
ANROAUT.F is structurally the same as ANRO.F except that it is au-

tomated to compute a set number of modes in a period range read in from

ANROIN.DAT I display the format of ANROIN.dat in the table below.

2.1 QANRO.F (interactive)

This code is structurally identical to ANRO.F, with the addition of a subrou-
tine that estimates the pulsational stability of the mode in the quasi-adiabatic
approximation. In the quasi-adiabatic approximation, one uses the adiabatic
eigenfunctions to compute the temperature and luminosity perturbations.
(See Osaki & Hansen 1973 for details.) In real life, I’ve not used this code
much, because the nonadiabatic one is readily available and it doesn’t take
that long to run.

The ganro subroutine also includes a computation of the gravitational
radiation luminosity (L, for quadrupole ¢ = 2 modes. Typically, gravita-
tional radiation luminosities dominate for low order p-modes in white dwarf
models. More generally, one can expect large values of (L, whenever ys has
a large value at the surface of a model, which usually means the mode has a
large amplitude in the core.



3 RKFANRO.F (interactive) and CJTHANRO.F
(batch)

This program also computes the adiabatic pulsation properties of a given
input model, but solves the pulsation equations in a different manner than
GNRI. This code uses a Runge-Kutta-Fehlberg (4,5) integrator to “shoot”
trial solutions from the center to the surface. The code does this in an
iterative manner until the built in convergence criteria are met. The guts
of the routine (which we call RKF) were written by H.A. Watts and L.F.
Shampine of Sandia Laboratories for geophysical applications and adapted
for stellar pulsations by C.J. Hansen. The latter originally wrote this code
for neutron star calculations; the current version works on any fluid model
of a star that is not too centrally condensed. The code has the capability
of interpolating the equilibrium model quantities between zones by means of
cubic splines to resolve closely spaced modes and satisfy the requirements of
the integrator. Because of this feature, the results of this code are insensitive
to the initial zoning of the model, so long as no important physics are left
out in the original model.

RKF is like GNRI1 in that it reads in an input model from a “prep”
code (on tape28.dat and tape29.dat) and uses the discriminant for period
guesses. It also computes an integrated (variational) period as a check on
the internal accuracy, which is 0.01 % at worst in most cases. Modes with
very low kinetic energies can show poor agreement between the eigenvalue
and integrated period, which is a result of the eigenfunction having a nonzero
amplitude in a limited region of the model.

RKF also requires a guess for Y3, which is the guessed value of y3 at the
center. For g-modes, Y3 is a small negative number, starting at about —0.1
for £ = 1 and moving down to less than —0.0001 for £ > 10. CJHANRO.F
is preloaded with an array of guessed Y3 values appropriate for g-modes.
When analyzing p-modes, Y3 is a large negative number, starting at —0.5
for the f-mode, increasing to —0.8 for £ = —1, and it continues a rapid rise
to -3 ({=1), —=1.5 ({ =2),and —1 (£ = 3).

The output of these codes is similar to their GNR1 counterparts except
that RKF does not calculate the rotational correction to the eigenfunctions
and it does print out the values of the various weight function integrands.

The output from this code is in the files:



contents of PERIOD.DAT

60800 3 Sequence, mixing-length version
80. 600. 260 Starting period, ending period, # of points in discriminant,
0 When zero, compute discriminant and obtain period guesses.

When 1, read in # of modes, period guesses, and Y3 guesses

from DISCR.DAT.

o discr.dat: listing of the discriminant used for period guesses.

o check.dat: complete listing of pulsation period, eigenfunctions, and ro-
tational correction to the eigenfunctions.

o resulls.dat: brief listing with pulsation period, kinetic energy, and Cy
values.

e cigen.dal: lists the eigenfunctions y; and y, versus —log(1 —m/M,) .
o weightl.dat: lists the weight functions mentioned in ANRO.f

o gravily.dat: lists the eigenfunctions ys, y4 and the weight function

G(y,r) versus —log(l —m/M,) .

CJHANRO is structurally the same as RKFANRO except that it is au-
tomated to compute a set number of modes in a period range read in from
PERIOD.DAT CJHANRO can handle up to 100 period guesses for each ¢
value, although the arrays can be redimensioned to handle more. 1 also gave
CJHANRO the ability to compute the g-mode properties within a given pe-
riod range for several ¢ values by hard wiring a parameter called “lmax”.
Normally, when I run the code, I set Imax to 2 or 3, but one can start and
end with pretty much any ¢ value except 0. If you run with more than 3
different ¢ values, you will have to redimension the arrays handling the pe-
riod guesses and results. CJHANRO reads in the period range and sequence
information from PERIOD.dat, whose format is presented below.



contents of NONFLAG.DAT

00 (iprint, iplot) These control output of detailed pulsation
information and plottable output files. If 0, no output.
If 1, you get output.

15 This number is the total number of files with adiabatic results
that you want nonadiabatic results for.

70 3 The first number specifies the tape number of the adiabatic
results file for that mode; the second number specifies the radial
overtone number (k-value) of the mode.

4 NADRS.F (batch)

This program is the one described by Saio & Cox (1980) that solves the fully
nonadiabatic pulsation equations for a given stellar model. It uses a complex
version of the GNRI1 equation solver, which we call GNR1C.

As input, it requires the same equilibrium model files as ANRO (tapel8.dat
and tapel9.dat), input files containing the adiabatic period and eigenfunc-
tions (tape70-99.dat), and a flag file called nonflag.dat. Because NADRS
reads in a tape file for each mode, there is a limit on the number of modes
one can run through NADRS at any given time. Right now, the upper limit
is 30, which utilize the names tape70.dat through tape99.dat. This is a
holdover from the good old days of batch jobs and memory limitations of the
original computer these programs ran on.

The output files for NADRS and their contents are listed below. I do not
include the eigenfunctions y3 and y4 in the output, although it is a simple
matter to write them out if you want them. For my work, they are generally
uninformative.

o nonout.dat: Complete listing of nonadiabatic eigenfunctions, work in-
tegral information, and various perturbed quantities. Generates about
2000 lines of output for each mode.

e nonsum.dat: Summary listing of period, growth rate, and cumulative
nonadiabatic quantities.

o save.dat: very brief listing with mode id, pulsation period, growth rate,
and integrated and eigenvalue stability coefficient values.



o diff.dat: lists the work per zone (real) versus —log(l — m/M,). Also
called the differential growth rate.

e growth.dat: lists the cumulative work up to a given zone (real) versus
—log(1—m/M,). At the surface, this is equal to the integrated stability
coefficient.

e yl.dat: lists the radial perturbation eigenfunction y; (complex) versus

—log(1 — m/M,).

o y2.dat: lists the dimensionless pressure perturbation eigenfunction y
(complex) versus — log(1 —m/M,). This eigenfunction is related to the
horizontal perturbation.

e y).dat: lists the entropy perturbation eigenfunction ys (complex) versus

—log(1 — m/M,).

o ybO.dat: lists the radiative luminosity perturbation eigenfunction ys
(complex) versus — log(1 — m/M,).

o deltp.dat: lists the temperature, density, and pressure perturbations
(complex) versus — log(1 — m/M,).

e work.dat: lists the thermal work, nuclear energy generation (or loss)
work, and PdV work per zone (complex, except for nuclear work) versus

—log(1 —m/M,) .

I urge you to treat the nonadiabatic pulsation information with extreme
caution, because the results tend to be very sensitive to the construction of
the model and the physics that you do or do not include in the models. The
problems arise from several sources, and 1 will describe them briefly here. 1
will describe the problems in more detail when I discuss the sample results.
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